Types of Software for Robot Chassis Design

There are a few main categories of software used in designing robot chassis:

CAD (Computer-Aided Design)

CAD software allows you to create detailed 3D models of your robot chassis. Popular CAD programs for robotics include:

  • Autodesk Fusion 360
  • Solidworks
  • Onshape
  • FreeCAD

With CAD, you can precisely define the geometry and dimensions of all chassis components. Most CAD tools also allow you to animate mechanisms and check for interferences between moving parts.

Simulation

Simulation software enables testing your chassis design in a virtual environment before building it in the real world. Simulators model the physical properties and dynamics of your robot to see how it will move and perform. Some robot simulators include:

  • Gazebo
  • Webots
  • CoppeliaSim (formerly V-REP)
  • MORSE

Simulation is very helpful for validating the functionality of your chassis design under different operating conditions. It saves time and cost versus testing with real physical prototypes.

FEA (Finite Element Analysis)

FEA software analyzes the structural strength and integrity of your chassis under different loading conditions. It predicts stress concentrations, deformation, vibration modes, and factors of safety. Some FEA tools commonly used in robotics are:

  • Ansys
  • Abaqus
  • Nastran
  • Fusion 360 Simulation

FEA helps optimize your chassis design to provide adequate strength and stiffness while minimizing weight. It’s extremely valuable for any load-bearing structures.

PCBassembly.com/contact/” style=”border-radius:32px” data-wpel-link=”internal”>Request PCB Manufacturing & Assembly Quote Now

Key Considerations in Robot Chassis Design

When designing a robot chassis, there are several important factors to consider:

Material Selection

The material of your chassis determines its strength, weight, stiffness, and cost. Common chassis materials include:

Material Strength Weight Cost
Aluminum High Low Moderate
Steel Very High High Low
Titanium Very High Low Very High
Carbon Fiber Very High Very Low High
3D Printed Plastics Low-Moderate Very Low Very Low

The best material depends on your specific application requirements and budget. Use CAD and FEA to compare different material options.

Manufacturability

Design your chassis components so they can be readily manufactured using available processes like machining, Sheet Metal Fabrication, welding, 3D printing, etc. Avoid very complex geometries that are difficult or expensive to make.

Assembly

Think about how your chassis components will fit together. Use fasteners that are easy to assemble and service, like machine screws, nuts and bolts. For 3D printed parts, consider snap-fit joints. Make sure there is space to access and replace wear components like bearings and belts.

Adaptability

Often you’ll want to reuse your core chassis platform for multiple robot configurations. Design your chassis to be modular with standard mounting interfaces. This allows easily swapping end effectors, sensors, computers, and other sub-systems to adapt the robot for different tasks.

ECMTXjKKPNgz08xPx+YUwJ9Q/c2vlLwW2W69jjuR9akg0rSY4j51p57MAQxldSvrjBx+lF0EMloHAIMjEex4q/IERQWbCkgDPHJ6UmBStbe3sZ0ubNrq2lRsq8E7owHpuHb/ADitXUNe1O7T/S7ud4EAIjZlCkgcFggAJ/Cq09rdWzbJopIyQCPMUgEHkFT0we1ZGpSMqxJ6kk/gaYtRJ765DLtyTIDtiQfN9Wao3n1mAqzxBkKhsKwYgHscd6u2qI3mSjlike08EhcHNTMT35HegCrb3UdyAXRRk7RnByfRlPer+5RyEjTAx8iIuB68CsmSNFmulTgMkbAej1qQJJL5CorNJIFVVUZJOccD3oGObLcsxPpkk4pUtLtg93FEzQQ4S5dRhFDHClj612ej+C3kEc+qMUUgMLdPvH/fbtXTatZWcWhalbRRxxQpayFVXCjKjcPxpAeJahF5cqyAcSA7vQOOv59as6VIvneS/wB2TJU9MHFP1Bd1vu/uNGw/E7TVG0bbPAT0DqD9CcUwPWPBLHytVjJ5SeENxgbthBI+uK6+uU8Hj5dUP+3bKfqENdXSAKKKKACiiigAooooAK5jxJ4TsdcUzxEW+oKPlmA+WUAcLKP5H/8AVXT0UAeC3un6/wCH7hlnikgLEgOBvt51Ho33SKjXUYn/ANbGYnzkmLLRk+u37w/WveLi1tbuJobmGOaJvvJKoZT+BritT+HOmXDtLp1w9oSCfKcGWLP+ySdwH4mgRwXnRSjh4ZfxXd+TYP6VC8Fs+d1unfB2dD6g5rVu/Aviu2ZtlolygPD28sZyPXa5D/pWa3h3xIhKtpN9n08hyPzAIpgQBbOHnEYPuVJ/75XJpj3j9EGOeGIwAP8AZX1rQh8KeKpiBHpN0OeDKqxD83IFdFpvw41KUhtUuY7dOMxwESyH2Lfd/U0gOIt7e6vJ0gt4pJp5WwqoCzsT9K9K8P8AgGGARXOsHzJBhhaof3YPbzWHXHpXVaRoGkaJHssoAJG/1k8mGmc+7Y/litagYxESNVRFCoihVVQAoAGAABxT6KKACiiigAooooAKKKKAMvXtNGraVf2OQHlQNC392VGDr+Bxg14eUmsbqWOdGQq5inVsgqwOM49R1r6Erh/HHhx7+AalZQhrmBSLhEGHmj9QB1I/znGKQHm9zB5oEictgE47jsRWVc2q3HzL8s4GPQOP8a0IJmgPlSkhMkKxzlD6MPSp5YEk+ZcBiAT6H3U0wM/Q4HinuzIpUrGijPuxre/yPU1mLNJan50ZlIwSBkqO2SO1OudShjt3eNszEbY1PBBPc/TrTEyG+1hradYoEjcxkGTzNxUn+58pB+vNSDXTcbAunwxOpy7QzSBSPZZSef8AgVYkNldTsXKkliSWbgEnqSa3orK3gtyFaJpivJkJALEdjjpSuxlqK7tpvlWRQ/dCQGH4VFfSQLF+8GST8g/iJ7YrLjsRuLM/myZBCQghF9i1aMVr8yzXB3SAfu06hfT8qYiWIm3td8h+YLvYenZV+tZYDEMTyWJJ9ySSTVm7n85hGhyinczDoz9Mj2HQVqeHdCutbvUiQFbeHD3Ev8KDPAHue3/1qAOr8A6MQTqci4jjTZb/AO3K333z6AcD/wCtXotQWttBZ28FrAoWKFFRAPQDqfc9TU9IYUUUUAFFFFABRRRQBn6zbrdaVqkDKW8y1lwB1LBSwxXg7ZQhu6MGx3ypzX0OeQc/jXivijSv7K1a7hA/czM1zb+0cjE7fw6UAZt+paFZE/5ZuHHuDzmn31yjWFuwPLsoI9DSQMJYfKOCVGw59MfKfx6fhVCVAyvb8go+6MH19P6UAdl4d8UWiW0ela3Gs9jjZHK43NCD0HrtH6fTisjxHp1tHcyizlSe2+Wa2kRgwaGRcgZHp0NcusrxvsIOc4A75ro4V8uKNW67QX+p5P8AhQBmQNLEPkA4BAxkEnOcHtipH1GYAj7M4bpnaSPqOautBEx3Dg98d6b5Vsow82HzwMqBj8TnNMRmwpNK/mOHBc/cODk+vFdd4aubOx1bTZLt0SAGSIySEBUdo2CsSeOvFY6RInKjr365+lK6pIjow+UgqwPpQM9smu7O3ge5muIY7dF3NK7qIwPXdnFec654o/tgvBZll06LJ3chrhuzMP7o6gf/AKh5xqEl/AUs3mnNqDuRC7mMnJwducZHTpWxAcRRQpwXwT6hfekBJeN/osme6xj8SwrPtxumhA7yIB/31Vy/b93HGP433H/dQcVY8O2Dajq1hbAcGQPIf7sa8k0+gHrPhuzFtpySkfvLtvPf2AGxB+Qz+NbdMjRIkSNBhEVVUDsAMCn1IBRRRTAKKKKACiiigAooooAKKKKACiiigAxRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSYzS0UAcL4q8GDUDJf6WqJdHLTwcKk57svbd/nrXmzpf6dIYLiGRMH5oplZWHuuea+g8Vm6po+l6xAYL6BXxny5BgSRk90Yc0AeMQ3FpNhSyqxwMTcD/vof8A1qszaVYsiuYBkjIkgeOVD+HX9a2tX+H2o2qtNp0v2yMZzGVCTqO2Bkg/pXK3Gna1p/M9td24J4LLIiH23DihASmwiHCsw/4Dj+RpY7WBD86hz2zk/oDVL7VfDjz5R25bNMaS6f780hHf5m/kCKYGm81vApBKoOuBgk/RV5qhNdyT5VAVjIwxPLMPQkdvapbbSNVujH9nsbqUSHCFYpCjds7sbcfjXY6T8Pb+ZopdVlS3hBBaGI75mHXBYfKP1pDOV0fRdQ1i5W2skzyDNK3EcS+rNj8q9n0bSbTRrGGzgAJUAzSEANLJ3Zv6VPp+m6fpcAtrKBIohyccs7erseSfxq5QIKKKKACiiigAooooAKKKKACua8WeHxrVmJIABfWu5oT/AM9Exkxn69R/9eulooA+fMSQSElSCCUdOQeDyOe47VJPEtwoljwXxnPQsPp6jvXofi/wo1wZtU01B5gVnu7dRgyY5MiAd/X/AB6+bLI8LZXlc5ZenPqPegCBViM0LTjBjcFieM46Bq2wyuNwII6jHIqo32W6Q4xkDnIwy+zCqj2t5ErCCVkBHHcY9qAY7UtUS1BhhO6c9SORGPf39K5xrh2JZiSSckk5Jq8dPdmJkGSSSSCQST3OakTTbb+MTe+0r/Wi4EVnqs9sQpy8RPKMen+6a6O1ura6XfG46cq3DKfQiscWFkvSFjzx5j5/QCp47DeflzGvU+WNv60AT6hNBKY4kUPMjhlIGQvrk1agTy0ZnOGK5JP8IHUmmRW9tbqzccfeZuQD7mq89w0vyJkRg5OeC5HQn29KAGzyedIWwcfdUHqEHQfU9a9J8AaK9vBLq064e5BjtQeoizy349v/AK9ct4X8OT63dLJIGWwgdTO/I8wg58tD6nvXsUUcUMccUShY41CIqjAUAYAApgPooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhVWBDAEHscEH8KWigCk+laO5LPp1ixJyS1tCTn3JWk/sfRMhv7MsNwOQfs0PB/75q9RQAgCqAqgAAYAGAAPQCloooAKKKKACiiigAooooAKKKKACiiigAooooAK47xB4Js9TaW7sGW2vWyzKR+4mPqwHIJ9efpXY0UAeA6hpep6TOYry3lhkBOx8HYw9UccEfjUUd1KvDYYd/wCE/wBR+gr3y5tbW7iaG6gjmibgpKoYfrXH6j8O9IuHaSxuJbQnJMZHmxZ/2ckMPzNAHnQngb7y/mv9Vz/KrVtNYRuGLW4/67RGQD6qVrYuPh74ii3GCW1nXPG1zGxH0YY/Wsx/CniyN/LOmXDHIG6Payf99A4ougsR3V3ZMciWI8YxBbeWPywKpNeDGI0J95OAP+Ar/jXSW3w/8QzbTM1tbg9d7l2A/wB1Af51t2vw4tlZWvNRlde6W8apn/gTlv5UAecnz52UHc7ZwiqCQCeyqO9dp4f8C3V0Y7nVt8FvkMtv0mkHXD+n867zTtA0TSgptLRFkA/1sn7yX67m5rVFAENvb29pDFb28SRQxqFREAAAFTUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/2Q==” alt=”” class=”wp-image-136″ >

Chassis Configurations

Different types of robots require different chassis configurations. Here are some common mobile robot chassis layouts with their pros and cons:

Config Pros Cons
Differential Drive Simple, inexpensive, good maneuverability in tight spaces Requires casters for stability, less energy efficient
Ackermann Steering Stable, energy efficient, good for outdoor navigation Requires more complex steering linkage, larger turning radius
Omnidirectional (Mecanum) Can move in any direction, very maneuverable Expensive, lower load capacity, requires 4 motors
Tank Treads Excellent rough terrain capability Inefficient on smooth surfaces, hard to steer, expensive

Use CAD to model different configurations to compare their size, complexity, and suitability for your application environment.

Actuators and Transmissions

Your robot chassis also has to incorporate mountings and transmissions for the actuators that drive the robot’s motion. For electric motor-powered robots, some key aspects to model in CAD are:

Motor Mounts

The chassis must have strong, rigid mounts to support the motors and prevent undue vibration. Mounts should allow some adjustability to tension drive belts or chains.

Gearing

To increase torque and reduce speed, motors are typically geared down using spur gears, planetary gearboxes, or harmonic drives. Model the gearing in CAD to check clearances and tooth mesh.

Belts/Chains

Many robots use timing belt or roller chain transmissions from the motors to the wheels for a strong, quiet drive. Shafts must be supported with bearings. Align the belts/chains carefully to prevent rubbing.

Wiring

Leave ample space for cables to route cleanly from motors and sensors back to the main computer/controller. Use clips, conduit, or drag chains to manage wires.

Simulate the kinematics of your drive system in your CAD and physics simulator to validate its smoothness, speed, and positioning accuracy.

FPTWicZ46elAxKKPwpKBC0UlFABSGlpKAGmilopDEopcUUCAUuTSZptADqOKbS0ALmlBptQzXMEBAkY5PIAGTj1oAs1Xls7aZ98gJbGBycfkKI7u3k6Nj2NTgg8g0AUW08qcwSsp9DyP8ab5uoW/30LqO681oUc+x+tAFSK/ibhjtPoauLIj9CDUMlrby5LIM+o4P5is97e5gdtpdUGSCcsp/EUBozZzRWPFqMw++u4Dgkc1eivreQD5sH3ouDRboPPDDI96YGVhkEEexpcmgRBPaQzKflAbnBI7/Uc1nRWOoLMkanYGOBIDlB7nH+FbGaWk12KTM55NSs22zxiRf78Z3Aj1yKli1C2k4J2t6NVzr94A/WnbLFoJYJbK2k3ncsrKVnjbGMpJGQfwOaFdLUTaGKysMqQfpT45Z4XEkUjxyLyrxsVYfivNZb2F1DlraY4/usf6iprWa7ZzFcREELkOPumquFjrLfxl4nt4jC1ylzERtxeRJKcemTyfxrCnkM8s0xSJGmkaR1hRY4wx67UXgUyjNAh1tE01zawqOZZ4owO/zOBX0LGgjSNB0RFQfRRivF/CFl9u8QaaCMpbs11J6YiGRn8cV7VUsqIUUUUigooooAKKKKACiiigAooprsqKzscKiszH0CjJNAHmXjzUDJqKWqN8ttGqHB/jf52/oK5PR7pftl2blibS9H9nyAnICDo/PoeaTWb6S+vL67wSZJJWUZ9WOKoRhoUgjVGdlXkL3duTzVkIsXdtLZ3M9tIPmiYjPZl7MPrUHWtx4p9W05ZXQDUbFdpCnJmth0P1H+etYVIYUhANLSYzTES2l3PZS+bE5VsEcdwe1OvdTvLto95HydDjFQEcU3aPSla4wDMeSTmng8U3FRXEksUTPGm58gY64HrgUwLFFVIJZGhWaVgqs5QEgAbhzirG5vQMDyCv+FAh1FNDKeh59O/60tAC00mlptABmlzSUUgFopKKACikooAU0mTRS0ANo+v50pFIVyCD3GDQBXF3aliofJ9QDj86mV0bowrRMui3EUUU+k2sBSMR+dYqVLYGNzox6+uDWVLpUyndY3Mc6E8JkrKPqj0r2HuTio5LeGUguuSBgHuKrhtRhyJYJfl6/KTjHqOtSx3cT9Tg/wCe1NMCGTTweYzz/wB8n/CoSL23PU/RuP1rTVlboQfpTs5BB5HcHkUBcz0v8YEqkGrsc8EgBVh+NMe2t3/h2/7vT8jxVKWxlUqYMH1wcH8qANXg04CsZZr2A4OT6g8H8jVmPUYyQJFKmgVi6YYTn5FGepAAJ/KoZbC2k527T6rwfzHFSpNFJ91gfbNSZoDYzGtL2A5hl3AdFb/HpSC9niIW4iYe+OD+IrUzSMqMCGUYPX/9VFgK8d3bydGH0NTgg4wRWfd2G7D2yqG7gHaT9O1U0lv4GKkOpHZ8jP0pXtuOxvUVmx6iVwJ4yuehwcGr8ckcqB0bKnvVEskpKM0UAFFGauabYXGp3ttZwqS8zqpI/hXuxoA9B+HemGK1vNTkXDXLeRCSP+WaHLH8T/Ku8qvZWkNja2tpCAI7eJY1x3wOT+NWKgtBRRRQMKKKKACiiigAooooAKyvEM/2fRtUfdtJt2iBHUGT5OPzrVrlvHM5j0UoDzLMo+oUFqaE9jyeVLVQrRz7izbQjLhs4zTowAAcjnnNZrsTcxL2SN3P1PFXI87QaoRoWGoGO9McY+WKAySMemDxtP1pNQtobiP+07FW8mTmeMjDRP1Jx6f5+mVbORFqs46yyCBD6gfLxWzBM1uqlMHaio8Z+7Io7H39DQBjdaXBxnjH1/DpVy5toXU3dkd8JJ8yMfeiYdRj27j+lUd1AC0UwsByTge/SkEqHowNAD8UvSkBz7iloAJCZLeW1ckwSsrOnABZehz1zWcbK4iObWdh/sSHj6Z6fpWjScUCKAurmLC3UBI/vp/iP8asRzwSf6uQZP8AC/8AnNT/AMqgktLaTnZtb1Tj9OlAyQlh1BHuORQCD0IplrayC4hRrxY7dmAkeQE7V+nNX9TtbKyaHy72K4EvKeWMOB6sQdtTfoFip/hRmmYfGQcj3GOv+0OKQkj7wI+vT86oB+RRmmjmlpCFooFFABS0maM0wFzSZqOSRY1Z2OFHU1El1G4yAevfGaQFjNLmo1dG74PvxSTxNLGUVyuSDkdwO3FAF6C+uYSMMsi/3ZQHH4Hr+tSTvpF8P9ItBFL/AM9Iuv1yMH881k29vLExJf5CCNmc85znNWhStcexRvIPscgFvM8sZGdzLgD23CmR3zDhwcevWtLGeOx4IqGS0t5M5TafVOPzHSgLjUuInxhgD71MCD6Ee1Z8mnzLkxMG9Odrfrx+tQ+bdwHa4YY7MMH86ANYhWGGAI9GGagksoJPu/KfT7w/Xmq8d+pwHGPX/wDWKvRzQyAFWH0zQBnvY3EfzRk4/wBg5H4jrTUuryHhhvA6+tbH+etNeOOTh1VvfHP5jmmK5Ui1GB+Hyh9+lXFdHGVYH6GqsunxP904Po4/qOapva3dvypcAenzL+YoGbFBAIwQCPQgEfrWWt7dRBfOTKt0J7/1q/BcRTqSh5HDDuDQIe0UTDayKV9CMj9abHDFCpWNQqli2B6n61LRTEJRRRQAAFiAByTwK6jwrqFvpOt6fBIEP2om3uJDj928nCAH2PX61z6JLDH5qoTKf9WDxgdypPGfxpmlw3OoarY2sMU5ne5jLDYwZAGBLsewHrQB9CUUg4AHXAApag0CiiigAooooAKKKKACiiigArgPiNcMkWjQDo73LuPUBVUV39ef/EJ9h01tisFjk4YZyCwyKa3Ezy8x4mlkB+8oUD0xS7Z34Z9i+i9cfWnmWKWaURrsVWwRnPPU4pzNsR2jBdlBI46mqEDIsUCRRnGZUIz/AHs5zUxuPlYNwwHIqi08hELOnKkOyjjnpgVJM6SpkHkr178+tAFbTr+e2lnlTDLNN+8RvusBnn6+hrVK2l8jXFkwDj/WwtgEMfbt/I1zqZiyuegfH1PFRxS3MEqywOySDuPT0I9KQzdjjsXnhF/FPJbJIGnihkEUrAZ+UMQf5Vpay/hpIrB9CtrkA+YLyG4ZmZMY2kEkj16VQs7iPVv3TRMt2iFsxDO5V6lfb2prxyQn5hlc4Dr90n39DWco8zumNOytYrJdWDtt3tC+fuuMD8+lW2iZEikJVklDFCpBztODnFQPFBLgyRo2O5A/nT1VFUKgAUdAOAPwrREi0UUlMQUlLSUAIT1pjDIIIBHoRkfrT6Q0hlq31G4tdO1PToEhRNQVFllKbpFVDnCEnisr/ToR0Eq/7PJ/I81bxRjpRYCot3AeGDRNnBwMD8qnVsjKlXH+yefyNOeKKX/WIre5HI+h61Vey2ndBKyH0bkfmKALO8E47+h4P606qJmvIeJ498Y/iHI/MVLHcW7jKybT02v/APXoCxZpOaTJxyMj1U5FOABoENZVdSrAFSMEGqr2ER5idkPofmH59au7aTAoGZhjvYeq709V+Yf40+K8A4bK/qPyrSjRpJI0UgGR0jUscAFiFyfavUtM8JaRoENzf3YS9v4rdn3tEpjiK/MfKUgnnHU1nUn7OLkVFczseTpMCOOfdf8ACpFkQ9D/AIivQtY0Cy8W6VaarpscdlqEccskpSLC3KpnMbBMZI/hOPbvx5wdM1ssiwRC7DEKrWpDkE8fMo+YfiKVOp7SKkKUbOxYBBpc1BeWuuaQ6pqVlNEGGVkA3xkezrkUkd1DIBg1rcmxYxQVVhtYBl9GAI/WkDAjIIp2aYFWSwtn+5mM+3K/kf8AGqb6fdRHdH849Yzz+KnmteloHcxUurmI4bPHUHg/iDV2O/jbAbg1beOKQYkRX/3hz+fWqcumwtkxOyH+6/zL+Y5pBoW0kjf7rA1JWT9lu4VZieh42/Mv5ipLa8kaRImBbcduRzjjqaBF2S3t5eZI1J/vdCfxFLFDDCCI0C55PUkkeuak9KSmAtJRmkz/APXzQIWnb40JTeol25GRuVPdgKzrm+Kh47X52A+eQchPp71Tt53VXDclmLsxJJP1oHY6Wxm1aM7PNhmhfOS2GX8VPFdFo2o3WlXRltb2zUvtF1ZSAsjR5z8hHzKf0rjtOvll3qG2lex4bjvzViVI7mQSBjFcr9yZDjPswoJPcrDW9MvhAizxR3Mqki3eRRIccHYD1FaleCQzT7Uju8MqMGSSNtrow6PEw5Br0fwv4klmEdjqNwkzcLb3RIV2HZJx6+9S0WpdztKKKKRQUUUUAFFFFABRRRQAVwPxEXMemHuwmUe+0qcV31cd4/tmk0u1uFHNrc8/7silTTW4nseNwAiW69nJrSnASysQgwJRI8jD+JgxXGfaoXCBnIADNy3v71d8sS6KjjO6zvHRx6JMu5T+YNUxGUVFROBUrGqzt1pDK8qIT3/OocAAgd/zqVzyajoA3fCR26whzj9xMB+Ira8U3MFnJYSpAhNx5q3AXgttxg4+7WF4XIGrwAnAMUw/8drS8aD5NOOcjfMB+QrzKjccSrHTFXpGehtbkb7WQA4yyN0H4dR+oprB0IDqVJ6Z6H6MOKwFZ0YMjFWHRlJB/MVpQarMo2ToJEPU4GfqVPH8q9NM5mi9npRTUe0nGYJdjdShyQPwPzD9aVt6DLLx/eX5l/MUxWFpKQMD0NLmgQlJS0UDCiikZgoySAPU0hC0hpokQ9GHNOzQMbz+FQyWtvL95AG/vJ8p/TirFFAikLW7iI8mf5fSSribwqByC4zuIGAc84p1FFhhS0mOtJmmIkjwrq2M7WBH4c12l142LxwQfZYp7b7GkEs0crLMzFArj0BHSuIDYNVbpIWcsqbcgFihKknHJ4qZRUlaSGm1seh2/jHT9N0yBNJtZItquhl1B1coQxGI0Tgk1xJuJBI0qOyyMzPuQlSCxzkFarWv2eGL7peYliWc7tufTNKP60oxUVZC1buy/PqeoXaJHdXMsqoCF8xgSV9GPf8AGsia1cuHhRAO+w7W/I8VZFSinYexlLcTRHEsUickBgCuatxXIfgMre33W/wq2QGBVgGU9QeR+VU5NPgbJjLRN7Hcv5Hn9aNeoaFlZUOByp/2uKlBrLMWowdMSoPT5uPcHmrFtNJI2PJdFAJJIO3d6DNMVi7RSewpaYC9KTao6AA+wH9KXPrTWkRe/NADqaSB1qtLdxoMlgB/P+tZ099K2RGNo/vN1/AUBY0pruGEEuw9gOSfoKyp72e6YRqfLjYgYzgn3Y1UYu5ySSx9ckmnSRSRFQ/BI3AA5OPelcdrE0jrGPIiPA/1jD+I1NZR73wwG3vn+lU1Ut061p2TKFZHUo4GVPZh9aAZb+yQMQyttkU8MuAR9amjDltsfzv/AHuw96ijSSRvLjzub7x7KK2beCK3QewyWPc1RJXW2I+aRix6n0/Cl3NGQyMVZeQVJB/SnTzOc7I9w/3gp/I1VW4SQshDJIvVGADAeopget+DfED6taPaXLZvbJVBbvND0V/qOhrrK8T8MX7afrmmTbsRySi2m9DHN8nP0OD+Fe2Vmy0FFFFIYUUUUAFFFFABWbrlp9u0rULfGWaFmT/eT5hWlQQCMHoeDQB85SI0Oouh/iXgH1FamlyiWe5sJSBHfwtCvYCZfnjP58fjWn4n02Ox1yVJFKKT51s4+7JFJzj8DxWBNEyOJI3KsrB0I6qwOQaskz7gSQvLGww6MykH1HHNV7Ux5Y3RbHOdvp7Vua9CJo7XVoR8l0u25A/guV4cH69a50mkMa2MnHTJxnrj3pvrSmpoIIJkuS91FDJFGZIkmVsTkdUV1BAb0z1pN2Ak02WaG8t5YWCyK3BIyMHqCPStLxLfTXUVgrxRqI2ckxsxyxAHRv8AGsqy/wBfH9auaypMcPsa4qiTrRZvFvkaMVeaWkXilNdpiJkg5BwexHBq3DqF1ERlt4/2s7v++hzVWkoA147u1uGRTGySuwUbeNzE4A+Xj9KuXNne2kjwzxyRyIcNHcIY3B/HiufjJV42HVWVh25ByK7698WGXRblJvLnvEjjjg+1KBcRbztYHI+ZQOn86HfoI5osy/fVlx3PT8xxSh1PQ/kay01K5B+baw9MY/UVML23f78RRvVP/rYp3EXs1DPE0oQo4VlzjcMqc+tMWWJvuTr/ALr/AP16fvlH8AYeqHNAEQnu7dQs9uskQ/ijGeKninsJv9XKY2/uP0/I/wCNILlB13qfcGmMtjMcssZPr90/pQBbZGQjJVtwyCtNpi7AoVcbQMAD0p2fypiDNOFN70uaQBRRRQAGo2UGpKSgBgUDtTsUtOoGIAKcKSkLxjq6j6kCmIfxS1Abm3H8YP8Au80w3i/wox+vAoAsmjeO/wCtUXvJP+maD3OTUBuVdsF2YnngYFILGoZYl6sPw5qNrpB0Gfc1mvKo+6PrVcM7ksxOOw9BRcdjQlvscZ564FU5LuRgcHb79TVdzk5pBzSHYFLMcsSe+Sc0jHJNBzjAppFAyzbAKXnbGIh8v+8elQszSuXbqxpozjGTg9qkBwQQpwMe9AGhZWiyqxccAZB9KsRxHcUX5mLbUA/iNJFMht1WM8tkH1HrmtSyhWCI3UvVgfKB7L/e/GrMyWNIrRApOXPMh7s3oKqXWoBVLHJAPyohHH+8aranLObeaVGKncAcdQhOD+NYCSOh6nB+8OxpNjSubcesIWCvCADxnOfzqa6wyJcRHLR/OpHXb/EhrnWIySK2NPkMkMkR5wOM/lQh2sacUuDBMh6Mki/gd1fQcD+ZDBJ/z0ijf/vpQa+crQ5tkB/gLJ+RxX0PpxJsNNJ6/Y7bP/ftaUgRaoooqSgooooAKKKKACiiigDnPFnh9dd09liAF7bhntm6Fu5Qn37V5Ei3DQuJEImt3aGdCCCrKcc19AVwvifw5NFJdatpsHnCfD6jaIPnYjrNCPX1FNMR5xp13EZLzTL0gWl2AAT0il6K4/kaw7+0msLmW2lGCpOxuzKejCujuLDTpnSeK4wSpyjDBGezA02WCPVLRbWV1+3W6n7LKf8AlrGv8JNUBzEENxczpBBFJJI5+VY1LMfwFTX1jPYSLFOCshByjDDoRwQy1Gr3ljO2x5be4jJRjGzI49RleaieSWV2kkd3djlmdizEnuSeanUCzZAech9DVzVTujT2qnaffWrN+coBXFU/iJnRH4GY9FSW7QrIftCOyHj5O3vTX2bn2Z2bjt3dcds12GA2iiimAoIBz34xVqe5Wa28t1BkUgq3cYqpSUgGAYOadmlxRTASgO6/dZh9CR/KkNJQBMLm4H8ef94A0v2on70cZ9eoqCkoAs/aIz/yzZf91qeLhezyqPzqoKmt4JLiWKGMZeRsDPAHckn0FAicXDdpm/EU4XM3aUH6rXVQ+GdEt9M0q9v5p3e/uWt2CExiIFWKuhwehAzn1rI1Lw/JZwyXlrOt1YJIIpHHyT2zscBJ4jyM9iMg1lCtGbcV0KlBxWpm/arj++n5Ufap/wC8n5VBtoKcHHWtSS4zaioDNHhSu4ErwV9Qau2eleJdRiM1naPLEHMZdAgG4AEj5iK2Fg8HXOnyzRausFwLdfNt3Do5kVQSqxt8pye4Peum8Dn/AIkhY9Wvrgn8AgrixWIlRjdGtOCkzznULXV9Mm8i/UwTeWsu07CdjZAOVJFUGuXHWaQ/Suq+ILKdYwOosbcMfqzEVxPWt6FR1IczJnFRdkWDcA9TI31am+eOyD/gRzUFFbE2JfPl7bR9BSGSVvvO35/4Uyum8M6HBqEpur5glpF9xT/y2k7A/wCyO9JyS3Cxl21hcBUunh3R4LKrgkMPUgc/SnXBtXPmQWywYGHCsSv4Zrd8QajZwO9jpzZf7txMh+VR/wA848frXNNwgUURbauAw4PP4U3HUetC8lj26D8KFO7I7jr/AI0xEbAjOe1NQEn26mpXG7YMfX6ClYAD0zQMhJ9KljwiNIQCx4QHB/GoyKccttHZRwKBDQM/jzVmOBjG0qkEJ94dCB6ioOgq4CViSJT80n3sf3aaBl3Tbbz5V3D92vzyH/ZHb8atX98DcW9rFgksFwOgUd6fuXTbAs3Errub1z2ArF0zfcagJX5I3SH244FMS7mtqCBdPuvXYv8A6EK5aunvTM1hfGUAE7tgX+4GGM1z9tby3Miog6nk9gKGNC21rJceYQMJGpZj9B0qzprYdx/skfpW6lvDaWU6jA/dNuPrxXP2H33b2Y/pQK9zSsv9VKP+m0gH4mvoyyXZZ2K/3baBT+EYFfPGjRGaS1iHWa8RB/wKQCvo5VCqijoqhR+AxSYIWiiipKCiiigAooooAKKKKACiiigDD1bwzo2qxyhreOG4clhPCoV93q2OteWax4R8RaNKNoElp5u+C6iJ/dkc7X7jNe3010jkVkdVZGBDKwBUg9iDTuB4HdaZdajZNePEqXFuwheVD8khxkbgO1cu6PG7pIpV1OGVuoNe/wBxomm6X9qe0j2Q37MJoCS0SuUIygPQHvXmviXRLRJITG4Vp1YxZHKleSue49KTYjj7cTNIqoOMZZuw/OruoJ5axgurMy5IU529uSKpsk9rJslUq3Yj7rD1BpJZNw61lJK+xoti7o+iXWsNdujCO1tFQ3ExGfmc7UjQd2bsPauv8Q+GvDOjJo9ukMz/AGm3dppHciYyADDBxwO/GKxfCOtHTDdwShGtLmWIzRzjMEhHADN/C3901N4s8UW+o3RtrS0dbeyzFDLNKWcnuQBxj05NZVadSTXK9AjJLcxtd0JtGdSl1BcQPNLAvluDIrRgMcgduRg1iVYvbxryXzNqoNqgIn3VwMHH16n61WrrSM0OALMFHLHgUro6HDqQcZ59PUVLbXb2pcpFA7OMBpYw5X/dzUUkkkp3O2SBgdAAB2AFLW4xtFFJTADTaWkNACUUUlADhWzoN/Hp175skMcscsE1q6yEqQkw2sY3HRsdDWMKsQOqn5gCDxzQB2uv6zZJp+mWkUski/a5L5VlAE6c42SBQFznoR19ulYF7qdpdxQRWpuUkmO6+87aFYxjKKu08jOTz7Vk3r7miAdiqphQTkJznAzUdupDbj6cZrKFKMG3HqNyclqWsUECjNITWpJXXiQfXNen+D7yGHR0jdgG+0zydecHA/pXme0bgffNacd5JbrbqrFR5QbAPq7cjFedjKbqJJG9KXK7lvxrcLPrd4QchYbZB+CA/wBa5iruozPPcvK5yzLH+i8VSrqoR5YJGc3diUUhoFbkmjpVj9vuhESRGiNJIR1wOAB9TWnfyXGnILRHILqGGCPkXpkY71S0WS5t5pLmAsrQBG3LnAOeM0mo3F/fT/bLsOXuQAkjLhGVPlwpxg471hzXm0+hXQoocv155OT6+9TtkgjaQwXjHIJ9jQ9v9nkMedzqqs4HYtzt+tTwhZOh6HBHf8a2WqIIFiOFUdcZNMkjaMh1HTr71rLGEKyEZT7sox0Xsw+nepNQtSqW8MQzJdOkUQHJ+c1QGOFVlD5wD0zTWZOAWJAGB/hXQ3elKrW1pGBuWPfLt7KvAyfeqF1ZQ2yHIGQOT36ZzTAyhsYnA6dzSN8pxmpbaMvvkPA52/h3qKU4c9KQDDj8a1tJgNxcB35SIBjnpx0FZhMbImFxJuwSCcMPoe9dDAPsOmhjxJP83vg8AUITMvWrpp7gxLykZ59M1JocZzcSeyp+fNZUwId2yeWJ5681r28v2DT0bA8+4JZAew6bjR1DpY13+zuGilZMSAqVLAEg+1Jb2lragiJMD1JyT+Nco7ys5kZ2Lk5LE85rpre5H2GOaQ8KhLH1xVJisUNUnaCA228tJM7O5z91CelZ9p8sczHshqvczNcTSSt1Y8ew7Cp1+W1f1dlUUr3ZR1ngq2Nxq+gR4yPtInb6R5c173Xkfw3s9+qvPj5bOyPPo8hCD+teuVLFEKKKKRQUUUUAFFFFABRRRQAUUUUAFFFFAFTULd7i3ZUGXQiRV6btvavK/FYS4sILiPdutbtopFIwyqwI+b6EV6/XMa54fNw813ZxJI0oxd2rYCzj+8ueN1KyEzy6+/4RubSdMdJZPtm1ILuFw7sZADmbd2/CuaurGaHLxnzYuuV+8B7gV2V/4Y2iSWycoVbElrcAq8R9Oeai0rwzullm1DURawt1jjVpnZxxlQBgfnTsuo7nIWN2sHmxuoaKUASKeQapzBBJJ5efL3EoM9q6rV/D0cc0ptWaWLdiOaOPa57/ALyIfzFczPbXEGS65TON6cr9D6fjQBXApaSlpgFJRRQAtFJRQAU6OPzGVSwXJAyenPemVYtLW5u5CkPRQC7HooJwPxPagCGRPLd0yG2kjK9D7imV10ngbV4jCsrhHmtftaMwQRhMhQGO7IOSB071z2oabfaZM8N1GVKySQ57eZGcMh9x/X3qI1Iz+FjaaKVPB9KZTqskfwetPBFRA07NIZLuFJu61HmjJoAeDll+tOujh4AD/wAu8X65NRA4IPXFOuWDSIV6CKIfiBzWMl7xUdiOU5IP+yv8qjNPfH6Cmda1hsJiU4CgClqhEsFxcW0gkgkZGGDx0OPUHiri3F7qFzA87AQhwqgDbEG4yUUcZPeqttbPcuOoiUjzG/oK0LueJoLaKKBYlthKCUJO8nHzHNc9Sa2W5UUVQ/mXE7D+KV8d+p9TV2JgTPIoAGRFH/wEbQfzrJgYqwYcn+tatrgG2Q8gHe/vj1roWxLLdtIZFkSRQs0RxIvZl7MB6GtPRbN5dQgmmYG3skY26nk+ZLwA2f7vP51RvYVAS7gOJoh8y54kj6lTWno11G1u1y+yNJJGPzMBsRcIMn8DVCK91quy71HZbTzyvMYwfLYBI4/lUA4+p/GsW7Gp3e/fD5SnnDkAgDnpXVXesWZGy1nSZxxstkeZz+Kjb+tc5PqKzXDQ+VIjLuzvABH1ANAisqpaxIG5KqQcc5Y85+lZEhyxJ7mtG4mCkoSd2O44596z3bJpDLFhAbi6gj7bst9OprU1e9VJ44UxtiUZHb0ApuiRiOO6u2/hBVSfpk1Uis57+4lnkysTOTz1IzwBR0ER28L30wJGIkOWI7mp9RdN8YHRV2KPRRWo0UVrCEjAHbiufvZC8px0FPZBuQsVPSr93MY7OytgcFl81/pngVnRqzyIg6swA/Gp74/6TKvaPbGv0UYpDKvU1oBctZQ+pDt/OqcKF3QepFaNqC9zNIORGBGnfk8cUIGeyfDiz8rTb+9Zebq5EaH/AKZwrj+ZNd1WX4eshp2jaVa4wyW6NJ/vuN7Z/OtSkwWwUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFW6sbK7UrcQRycYyw+YfRhzWafDelc7TOqn+ASEqPzrcpKl3Awo9BtbRvNgkZNh3kbFJbaOhdsnFYeu+H9HvLW+vFh8m7jglm8y3wolKKW2yp905+ldBr+v6ToNvG99Id9y/lQxRjdI+eC2PQdzVW6ZWsbxgRta0mIPqpjJzXl4ycoSi0zqoRUotM8Ke30+55Q+RK3bgAn6Hj8qpzWN3Dn5d6j+KPnj3HWkmYMFA6g1r6fa3jxyH5mEYzg5JHfjvXpxldK5zS0Zz9Fa8xs5HKTR/NnG4DDD8V5qvJp6HJhmH+7J/wDFD/CruIoUlTSW9zH96Nseq/MPzFQ0wCus8KXNiY7nT7r92JLmO4juYgDcWz7DF5gB+8nJ3D3yOevJ1fs4RJHI8Upju4zviIOM4HSgDt/EfiGwuJLWGPUFd7C3ksnktVmKTc7SwLKOOPU1x2t3ouJhFHcPcRIRIZn3Bp5SoBlYPz0+UewqrcXNpIkAS0MdwiOtzJ5jMs0hOQ4U9PeqZB78msaVOMPhVipNvcQVPAiySKjdDx1xz9abFDJKTsA465OOtLNDLA+yQAHAYYOQQa2JJLmJIZdikEYBwGDY+pFQ5ptFJeYDs0ZpuaWmAtMkOWH0Ap9MPJqHuMKXFABPABP0pxVlxuUjPIyCKpCG0f54paKYGzYz2hjWNMIy/wADdT7g1TuOIpPcn9apYpS7ldpYlevNcqw6i209zTnvuEWRzx6VoxsRtZfvL09xWcv8P1P6VMsjIVJJ2n9DXUjI0Zrw/Z5P7xXaPqeKtW8sUdrZQMFZVIkkVhlWCjIBH1rLZPM8tc8MwY47gc5qR2ZMgegAx+dMDTutYuBFJHEyxIQQVhVUGP8AgOKx7MlpJpScsxC5PvzUT7m6nilhbYCoPqQfemAXs3mTNj7q/KPoOKrF2ZVU4ODwcc89s0rq2en5VLaxGW4gjx1cZ/OkB0EcfkWFtCOGkwzfjzU0bKjxwBTkoZGYdAM4wabOymWNcgBB/wDWqXcvYjpjiqIKd65LCNOW29B2zWHPEVY56961XuVS4uMjndjPrgVRnPnSBU6se1JlINMty8/mkfLFyP8AeqDUV23c/wDtEP8AmK24kjtIFB6sQDjnJPFZOp4a5THXYAfzpB1ILcBFklP8K4H1NdR4O0xtQ1TSrcrlZLgXM/HSKL5zmubKE+Rbr1Yhn+lev/DTSwkV9qjr97FnbE/3U+ZyP0FAM9GHHH5UtJS1IwooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHk/xG06+Or2OoSI0li8MMEZwSkciMSyN6Z6j/wCtXYXX7vw/czC1LymwdQiHAAaMruyew7/SulkihmR45Y0kjcYZJFDKR7g8VWlsUe3mt0do45ImiC8EIrDb8ua4cVQlVaa6Fwly3R80OFi8+MrFIXQKGyxMbBgdykYGe341v6Rfi2iSRiWDHy3Q+uODW7rHw21i2eR7K4t7iNiTGjny5COuDniuUlstU0iVodRs7iBWOCXQ7cjkFXHy5H1rpaVlboTe71JLCC1n1nyrolIJJxk9NquSAefTiptY0q40u7E23dCJCpI55HY1nSvNDPHcAhxnKP1Vx3U12uk32i6wkkWokwq+BvGWjiOAu2ZT8wHo3StIO8SJaM464ujJLvgREUhRtUYB4x2qY6e80e+WDHcNsO0/RxXTap4C1CIC70mSO4tm+dQrB0I68MtQ2fiDVdHtprG80pnVgRngrnGMkMKoTfY42W0tgSFkKH0bn+dRi3uIjujdSOxBxVi8lNxK7mEpuZmC4GBmr3hgL/b+ho6K0bXsaujgMrAgjBB4qZy5YuRcddDBaKYEko3PORz/ACqMgjqCK951Dw54anjd20y2R9wy0IMTf+QyB+ledeLdM0/R5tOWzjfZcxTPIsrl8MjADaTz3rko4yFWXLbU2nRcFc46OWSPOw9eveiSSSVtzsScY59PSrLtbY+aIAnsvatm18K397axXUYhjSUZRJnZHK9j0IrrujE5qitm50G8tbiO2kUebJG0qBJFYFFOCc1Cuj3b5KI2AcEl4wAfqxFNAU4ZUjV8oGckFdw447Uk0omfeEVMqAQvTI4zVl9MuEcxn746gNG36qSKeNH1FukMp4yMKDx+dMRnk001Ya3CHa7lT0IIwc00Rwk4805+lKwxIZfKbdjIIwfpT7i488x/LgIpA5z3zUkdmJQxRiQpwckD3q9Boc00D3JZI4QdqtKW+dvRABSbSWoGPmjNdRa+GY5re4uGulAhQttSLcWx2yTT7PSNNe5gt5FnkaRgp2MFxn2A/rXJUxlKF7stQbOWCueimnrD1LkKACTXpFxouhaaglax81BlW5Lv8wxuG7jiuT16LTFa2/s9y8JQCTchQrJ3XBrPCY+GLh7SmtL2HKm4uzMJAGHHvj8asrGrJgjt+VRRoqF+uBz/APqq2hVlDKcgivRRkQW4ZZ/KPICMR7A1MxVmYDcSDztU4GPc8frTIObi4f8AugAfzqUjKgfj7c0wIZRAiHPzSNwqhwSp9TtGP1qEKAjuTypAAyBnP15pzoDIn5n+dJInA/GgCAknP9K0NHjzcNIekaE/ieKoBOea2dJTbDcSe4H4DJpiMzVJWe8lwxwgVeDj37VDayypcQkO33gCCTjFMuW3XFwfWRv8KksUL3MI7Kdx+gpdRmld2tw8xkiXKvgnkDaenOaWJbazKmeRfNboOuKtTSrFHJI3RQT9fauckd5neRzkk5+ntQI6WSWMIXOCqjcDnIrFjJmlluH6Ak81BG87r5AYlWI4q1Iu1Y7dPvNjdj0pjJ9PgluZwyKWkmkWGFQOrMdoxX0Xo2nx6VplhYIB+4hUSEfxSHlz+deX/DvRBdagb6RM22mKNmRw1ww4/LrXr4pMjqLRRRSKFopKKQXFopKWgaCiiigYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBR1JHMaMn3lLAfUjIrCZhcxwSSiGa1uMxzQTIrqkqHYwUn14NdNOheJwPvD5l+q84rktTRrVMwYWFtRiuIlBxhJQA6kfWloRK9zM1HwPol75jWe+xmk+bEQ327H3iY/yNcbf+CfFWluZreIzKm4iWxYl1Uf3o2w36GvWFuIRtUsAf5VoxzB1UMFde3ehq2w0zwi18Qa/pkm1XlhlHDeWzW7n3eNhsP/fNXrjxhrVyjC5tobgEYLz2kbNj/fixXrGr6boF7Ewv7LzQV4Yw72H+6y/OPzrzu+8KeFJZGSx1S4sJifljulcwHPbewBH41SdxaHGTaj5uf9CgU5PIjfI/AtU2hzy/25ojBQqi/twQFC8Fsdqsap4W8RaWDIYWurYk4ntQ0qYxnJ2ZIqjohk/tnRvlZmW/tvkHUkSDjFZ1HeD9C46NHudzzDJ9R/OvMfiGcPohHXy7sfhujNei+K7m3sNKndVkilkkijRkU/xHJ5HFeNeIriaaa2R5/OWOMkMGLqGc5Kgn9a8TB0pKqmddWopRI/D+nDUb4GUE21viWb/aOflT8a9DMoAAGAAAABwMAYwBXPaDbmy09N67ZbhjM4PDBTwoP4fzrSMmSea9WbuzmQ4wR3Go28sg+UW0sOT0BJBx9a4zWVlW4udwwkW/avQfKxGK7NC+QQcYII9Mg55FZ/ieFbrS5J4okWa2d2mCD5ikihTyOccAitYaoh6M5SBLdo4ZfKUblDYyQQT7g5qzFf3FrIEYkwucRsT90/3WNSaXpEGoaZeXH25Yru2hQwwSEIpRRuZyxI9wOKzUYvbSbzuwHGfXHINaphY15rWHViChWO4cEAtwrOOgb+WawvsN8k7QNa3AnXIMflPv64zjGa6MRLHOyIu2MCJRjJy5jUnFWbW7vU1JilzOH+ypGGLHcEVs7MnnFNiuQ6R4evVjabUke1ty4cLJ8s0oA6Kp5FWL+YuwSJNkMKbYYlGAAB6etarNJIC0ru7EdXYsf1qkbJ7iZFUdSB7fU1hPzBPUbp/2lLOTaxBlLIwHdT2rb0vTUtQZ5ADcSDAz/wAs1PYe/rVi2sIrcKoO5VO5QQOGx1q6Frx6OHanKczolK6sihq0N3PZOLXd56OjqF6kA8gA1xGsGVrJJZoWR47kRuShRiNpG4ivSQMf0rM1+0+26VfxKu6QIJUGMktGd2B+tdlKEaekFYhtvc8tUZLHsQKTDQtvQZjJ+dfT3FKo2HZzjtmpAQeK9IzHRMp8wqR8zdR34pxVj/F+QqtASrzDoNxxU3+9JIfxwP0piHbFXtz6mo3weKRTmRgOgUYHJ7+9NlDMcqccAfl3oAaVHNa9mClgx7tuP9KyBvwd2DxwR1rbhGLBR/sE/rmmgZy8v+tl/wCuj/zq/pysqzzBSSBtUDuapTrtnnX0kb9Tmtm2C29spbjCl2+p7Uhsq6lMW8q3HXAeT6noKzjgcCpJZC7ySHkuxJqW2g8xt7j5B+vtQGxNbRrDG0z9cEjPYVNZxSzSBwpaWZxHCo5JLHAAqN8zyCJf9WhBcjpx2r0L4e6F9svm1SdP9FsCFtwRw9x2I/3aaJbsei+HNITRdJs7MAebt825bu0z8t+XT8K2KQUtIgKKKKB3FopKWkMKWkpaCkFFFFIoKKKKACiiigAooooAKKKKACiiigAooooAKzL/AEu2uhnGDuDYydu4HIOBWnSEZyKAMYadCmWbLO2M9hxxwKY0ZjJ8slfoa1HHY1VdetIgrG4uMbW2sOnIwfzqrKYpBiSFGHuAf51adetVnHWpHYiWXyM+SmznkLwPyrGuZNG+3w3culw/a7aRZI7q3xHMHU5yQBtP41pTzRxhiWHFc9IXkZmxyxJ/Ook7qwJdTa1TV9O1WxeynfZHIVMhaBzICpBBTa2M1yb2Hh23kEsEE11cL9yS92+VGfVYl7/Wr32eVugqRNPc9RURgo/Cir9zNxI5JOSWJyfWp47djjitVLEL1FTC3UdqrlC5QjtiMUs1qxUvEFMgUqUf7kqHrG/17VoiI0vlU1pqLc4O+0CR2eXTkZl5861kwJYG/u89R6GstNL1Wdmt4rOYuQVIICqPqzYFemS2kMu1nDLIv3JIyVkX6MKR7ZnH7wxyHpudAHP1KEfyrXnXURyX2IrApuCBPvZsE5C/w7SR9ARVK3KDVGRjwtt82OejZwPrXYPpzDmNIGPIxIXVRnv8oJqjD4ciW6+1TzFjsKFIsr1/2j2/Cn7SIrMigjedsKp+g6mti2tFhGcAuRgnHQegqzFBFCoSJAi+g7/UnmpdtclSpfRFxREFpQKkxRisSxlJnnt1oPemk0AeYa3p0thqM6Efu3dpoG7NG5zj8OhrJZXjYunIPLL/AFFeqarpltqts0EvyuuTDKPvRsf6etecX1ne6ZKbe7jOR9115V07Mprtpz5lYhopxMjM5HU4JqXmq7ACSN05DHnHrVjDdyfyFbCEAwSaGGelGTuRcADB57k+9JJu/hH1yetAhMEA1tQ82sS+seKxF3kEMB7YNbFs2beP6EflTEzHu4VjuY5nB8tsbsdnXjFNursSqI487Op961ZUVtwZQwbqp7+4qr9mtEJYQnP+2flFA7mfBbPKQzZEY6k9/pVqWTbtghHzHjj+EeppZLhmPlwgM3TK/dX6U6KER+rSORk9SSewpAXNL02e9ubWwtlLTXDhS2Puj+Jz7CvfNI0+20uxtLG3GI4ECk93f+Jj9a5HwV4f/s63+23Kf6ddKDz1hiPIQe5713KHAq7GMncnopgNOBqbAmOopKWkUFFLRSKSCloopFhRRRQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGugYeh9agNu5/iX9as0UAUms+pZyfZB/U1TmtOoC/mSa2aaVU9qmwjlJ9MZySc/0qJdMA6iusaFT6VA1uOeKdhamAtkq/w077MB2rZMGO1MMIp2EZBt+OlNNv7VrGGmmGkBl+R7UnkGtQxD0phi9qVgMwxUnk1pGL2phi9qhoZnGP2ppjrRMXtTDD7VEojTKGyjbV0w00xe1ZuJVyntoK1ZMVIYzU8o7lMrzUbL7VcaOomjPpS5QKhqpe2VpfQtDcxh1P3T/Eh9VNaJjNQshq4qwmecar4bvLJnktw0sH3gyjJX2ZRWRHKSGDj51ODxivWHU81jX+hade7nMQin6iWIbTn/AGgODXVBt7ks4LKkg46dKcduMk4zW9c+G72JN0OJ2B5UYU49RmsZ4J4SYri3mj54MiHH51oIiAQ9DVy1YhGTuDkfSqoitlIO5QeoyasR7SQY2ViOCFPamJkkqhxgkjHQg4Iqk9tuPzSyMPQkD+VXWJ9DTY7e5uHCQxM7MccA/qaAKyokYAQAfTqa7rwl4Yd5ItRvo+mGtoXHT0dwf0p/h7wniSO5vFDyAhkQjKJ7n3r0a3t1iRQB0qkjOT6EkSBFAFTA0gBp4U1RA4GpFpoWpAKhsaDFOopai5soiUtFFIsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoIoooAYUzTDHU1FBNisY6aY/arWBRtFAWKfl00x1c2ik2UhFIxe1MMVX9lNMdJgUDF7U0xVf8AL9qaYvapGUDFTTEPSr/l0hjqbDM4xe1MMXtWiYqYYqVgM0xVGYvatQxe1RmKlyjuZZh9qiaDrxWsYfaozD14qlERjNAMnioWg9q2jAPSmG29q2iiWYv2cenbvTHtUcYZAwPZgCP1rb+y+1KLU+laok5WfQ9PuABJaxHHQ7QCPyqsvheyU5jiC5/ukiu2WzJxxViOx6ZFMVzirbwvbh9zK757OxIH0FdNY6FDHjESKOOigVvwWaLgkCrioq9BSbSCzZUhs44lAVQMVP5YqbFGKnmHyEQQU4KKfijFLmDkExS4paKVy1GwUUUUigooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUUUAJijaKWilYBu0UmwelPoosBFsFIYxU1GKXKIgMdMMXtVrFGBRYLFMxe1MMPtV7aKTaKLCsUDB7Un2f2rQ2ijaKsVigLcelPFsOuKu7RS4FO4cpWW3UdqmWNR2p9FK7GooMCiiikUFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Z” alt=”” class=”wp-image-136″ >

Structural Analysis

To validate the strength and reliability of your robot chassis design, conduct FEA studies in simulation software like Ansys or Fusion 360. Some key analyses to run are:

Static Stress

Apply expected loads to your chassis and solve for stresses and deformations. Check that stress safety factors are at least 2-3x and deformations are less than 1mm. Optimize the design as needed by adding ribs, fillets, or adjusting wall thicknesses.

Modal Frequencies

Calculate the natural frequencies and vibration mode shapes of the chassis. Verify the frequencies are higher than any oscillating loads from motors or mechanisms to prevent resonance. Add stiffening braces if needed.

Fatigue Life

If your robot will experience cyclic loading, run a fatigue analysis to predict the time to failure. Make sure the fatigue life exceeds the expected runtime of your robot. Use stronger materials or beef up highly stressed areas as required.

By conducting thorough FEA studies, you can be confident your chassis design is robustly engineered and ready for prototyping.

Generative Design

One of the latest tools in robot chassis design is generative design, available in CAD software like Fusion 360. With generative design, you input the spatial and loading requirements for your chassis, and the software automatically outputs an optimized shape.

Generative designs are created using AI techniques like topology optimization and lattice optimization. The resulting organic, skeletal shapes are uniquely tailored to additive manufacturing processes like 3D printing.

Generative design is a great option if you want to minimize the weight of your robot chassis while preserving strength. It’s also helpful for squeezing components into tight spaces and optimizing the natural frequency of the chassis.

Conclusion

Modern software tools have revolutionized the process of designing robot chassis. CAD allows quickly modeling and iterating chassis configurations. Physics simulators enable validating your design’s motion and performance in a virtual environment. And FEA helps optimize the chassis structure for strength, stiffness, and durability.

By leveraging these digital engineering tools, you can greatly accelerate the robot chassis design cycle and avoid costly physical prototyping. The result is better performing, more reliable robots developed in a fraction of the time compared to traditional methods.

The field of robot chassis design software is rapidly evolving, with new AI-based generative design and advanced simulation capabilities. Robot designers who master these tools will be well-positioned to create the innovative, robust robots of the future.

FAQ

What is the best software for designing robot chassis?

There is no one “best” software tool for robot chassis design, as the ideal package depends on your specific needs and budget. That said, some of the most popular options are Autodesk Fusion 360 for CAD, Gazebo or Webots for simulation, and Ansys or Abaqus for FEA.

How much does robot chassis design software cost?

The cost of chassis design software ranges from free to tens of thousands of dollars. On the free end, FreeCAD is an open source CAD package, and Gazebo is a free robot simulator. For professional grade tools, a yearly subscription to Autodesk Fusion 360 is $495, while Solidworks licenses start at around $4000. High-end FEA solvers can cost $30k+. Many vendors offer discounted or free licenses for students and educators.

Do I need to know how to code to use robot chassis design software?

For basic CAD modeling and FEA, no coding skills are necessary. Those programs use a graphical, menu-driven interface. However, some advanced simulation and generative design workflows may require scripting in Python or another language to automate the process. Robotics is a multidisciplinary field, so coding literacy is very beneficial.

What computer specs do I need for chassis design software?

Robot chassis design software is quite computationally demanding, especially FEA and complex simulations. A modern computer equipped with a multi-core CPU, dedicated graphics card, and SSD is recommended for best performance. Ideal specs are something like an Intel Core i7 or AMD Ryzen 7 processor, Nvidia RTX graphics, 32GB of RAM, and a 512GB SSD.

What if I can’t afford commercial chassis design software?

There are plenty of excellent free and open source software options for designing robot chassis on a budget. FreeCAD and Onshape offer pro-level parametric CAD for zero cost. Gazebo is a powerful free robot simulator. And the SimScale cloud platform provides professional FEA capabilities free for public projects. With a bit of research, you can find capable no-cost alternatives for almost any chassis design task.

Categories: PCBA

0 Comments

Leave a Reply

Avatar placeholder

Your email address will not be published. Required fields are marked *