Coverlay squeezeout is a common issue encountered during the manufacturing of flexible circuits. It occurs when excess adhesive used to bond the coverlay material to the flexible circuit substrate seeps out from under the coverlay edges. This excess adhesive, also known as squeezeout, can cause various problEMS in the functionality and reliability of the flexible circuit.
Causes of Coverlay Squeezeout
Several factors can contribute to the occurrence of coverlay squeezeout:
Excessive adhesive application: Applying too much adhesive during the bonding process can lead to squeezeout.
Improper lamination pressure: Insufficient or uneven lamination pressure can cause the adhesive to flow out from under the coverlay.
Incorrect adhesive viscosity: Using an adhesive with a low viscosity can result in increased flow and squeezeout.
Inadequate coverlay design: Poor coverlay design, such as insufficient edge clearance, can contribute to squeezeout.
Effects of Coverlay Squeezeout
Coverlay squeezeout can have several negative impacts on the performance and reliability of flexible circuits:
Electrical shorting: Excess adhesive can bridge adjacent conductors, causing electrical shorts and circuit malfunctions.
Contamination: Squeezeout can contaminate other areas of the flexible circuit, such as connectors or component pads, leading to poor adhesion or solderability issues.
Reduced flexibility: Excess adhesive can stiffen the flexible circuit, reducing its ability to bend and flex as intended.
Aesthetic issues: Squeezeout can be visually unappealing, especially in applications where the flexible circuit is visible to the end-user.
Controlling Coverlay Squeezeout
To minimize the occurrence and impact of coverlay squeezeout, several techniques can be employed during the design and manufacturing processes.
Design Considerations
Provide adequate edge clearance: Ensure that there is sufficient space between the coverlay edge and the nearest conductor to accommodate any potential squeezeout.
Use appropriate coverlay materials: Select coverlay materials with the right thickness and adhesive properties to minimize squeezeout.
Consider selective adhesive application: Apply adhesive only where necessary, such as on the conductors, rather than flooding the entire substrate.
Manufacturing Process Controls
Optimize adhesive application: Use precise dispensing equipment to apply the correct amount of adhesive and avoid excess.
Control lamination parameters: Ensure that the lamination pressure and temperature are optimized to achieve proper bonding without causing squeezeout.
Implement quality checks: Regularly inspect the flexible circuits for signs of squeezeout and take corrective actions as needed.
Parameter
Recommended Value
Edge Clearance
0.5 – 1.0 mm
Adhesive Thickness
0.025 – 0.050 mm
Lamination Pressure
10 – 20 psi
Lamination Temperature
150 – 180°C
ImAge aligncenter size-large”> SMTGfOX/vhqX+yZD1mUZ9UYfzoAzKK0xpLnH75RzjlGzQNJkyw89eO+xsH8aAMyitQaTIcfvl5GfuN9MUf2TJ1Ey/98NxQBl0Vqf2PJjPnp/3wxp39jSYz9oj/AO+GoAyaK1f7Hk4/0hOckfI2ePWgaRJyfPQY65RuaAMqitb+xpDnFwh4B+4386Do0gwPPU5GThGwPqaAMmitX+xpf+e6/gjH+VO/sWbHE6Hv9xs8e1AGRRWsNGlIB89cYzyjA/kaBo0p5E6Y6fMjDp7GgDJorW/saTLD7QmQcco+D9DQdGlzjz0zjJwjY9OtAGTRWqdGlGMzryeMIxpTo0o/5bKfojE/kKAMmitb+xpBybhBkZ+4xNINIYgf6Qgz/eRgR+dAGVRWsNGc5AuE645Rh/OmDSJs8yqozjJU4z6UAZlFaZ0qQHHnKeCchGPA6ml/siQAHz0OfRGP8qAMuitM6TIAf3ynGf4G5xQNJkOP369M8o35UAZlFag0iQj/AFyj6o1N/spuf36jHqjUAZtFaX9lPkATKSf9hsfnQdKlH/LVeuOFY4oAzaK0jpbjcTMuBjOEY/ypf7Kf/nunTP3TzQBmUVpf2XIRnzlHsUYfpSDS2P8Ay2UduUagDOorR/st84Ey8c/dYD86Q6Y2VHnLz/sNgfjQBn0Vo/2ZIMnzl644Un+VIdNZc/vVOPRGP5UAZ9FaH9mvgHzV55+6c0n9nSf89VH1UigChRV/+zpCcCRc+u1sfgaP7Ofp5q/Xa3agChRV7+z3H/LVeePutS/2a/8Az1X/AL5agDRyBzwe2Rx+FAxjqcfT+tHIJJAz3/iAFHzdeMdev9KAFABxyR7EZ3fjS/KeQT+W6kwx5GMenH6Uc9gM+nAGB3oAXI9TS8+uf8+lJg+g9u360YH09c8/hmgB2Qvc88f3aB09vy/Wgcddueh7gH2peM5yMdu/HuKAD0P9P60uc85H0xnP40mB16j19/pS8n0Hc9sfQUALw4wTgjuBkfTGaOeRu/rz9KPmPoT7YA+ucUYzwPx7H86ADPYde/GM0vzAcsPyx+tHPcDPfvg/WlG8cnAHp94YNAB833jwB26Y980Yzzu+uec0YOc/w9gT39MUoB7Yxj5vb0AFAATnBB5HGetLgnIyPz6fhRwf4Rnv0AxRgH7qrkf8BOT0GaADkcZz+v6U7J4yeT3xjP4UnPPQe+M4/GjBH3iM/mMeooAXcBk5GPYbcfU0cHnn6Y7/AFo9MhcduhyPU0gz26dOvIP0oAd1xzx375xQMHvjHTjOPwo5OcEYHBGMYHsKMHtg9hn5c/WgBc9icfTP54pAVHy8n6cZ/Cl4AzjH4/pmgDsQM/mQfrQAA7ejcHp2x+dLz1yfYYx+tJgdwvPoQRilC+2VHc9yPUUAHJ+bd27jOfoaPvd9v15zS5J7gDqR6emBSHP8OPx+WgBfYNyO+M4/Cm5zgZxj0xz74o9gBkdsgZ+po4Izjr6Hke2aADkfxZJ6fw/pRkjJzx2xwR+OaMKR8wGfrkD8aOnXbx06Nx7g0AIepbI59v1zRkkAg598A5/E0YyeoA+o/LGKOc9to644x/uigAxnoeQeSR0Poe1IcHOMbsYIbkMPQ4pT2x1x3+X8TxSYHblvpjP40AMSQ52ncpBGGPXPb60FjG2MYB6qOx9R7U87uuFDdweQQeoyKZuRsqxOAONw+Zc9jQAvzDLZGOoHH55o687h9MZ/WkOEI4JBxuU8/wDAh7Up9Qo29cj0HtQA3r/FnH4/h1pcHuQCO3XH1AoOOyjP1AH1pOeMAH0GQOfc0AHT5fXn0/SkyV4yM/gOKXrxgA/gSPbNGD0IGfXg0AITjPIx6AbcUmM85H06Y980uD7c9P4sj3FN75yPz7/7tAARkA9ffrn8aM57j05Gf0oOT6Y7gcflScdvyPH50AGQflzz1A9PekJxxwPXpz+FL9MZ9aTGAc7Qe54OPoaAE4H8X5DFBOOfwHbH40YA6jPpg7qOnOBt7ZIJP1FACdefzGOT9DR15yB9Rn8MUpzzjH+0c4/IUnzdtvpjhfxoAbwcrnkc567fwpPYH+n6U45PAwT2PT8zTfy/Tr9aADOOpH8qXNAB7gfzowfb8xQAZByWDe+cikx2/Xtg9s0vXuPwwaARjGcH8z+VAByMAdB07gfU0uMdNx+mT170A8gevU9M/hS4x3B/IUAGF6jOT2yTmlAyQdpBHAP+IpMgA/Nx34/rRjOCCSPw5oAeFXgkMMZPPy8+9JxyCpC9zjr9KBg87j6nGDkfQ0uVPy5OQevpQADHAAOMZB7fiaUADAAbsAcE9u5ozk4/Xqfrij7v8RP4Yz+VAC4A6BuTkjJJz64oxjt83sc8fSjoM/4AAemaXpzjjuMD880AAGcdc478ckY5FGDgZB2g8Zyp4+lBwccnHPYHOfc0ow3AJ9OxoAXIP3lzx16DB96OeNqt7E5IwPejIOR/+ug4Bxu/AnGcUAHyrwFc547k89TS4XkjduIwSCTnHoKTgYO7Pv657YFKcDnJ9cEAAe/WgBQBwTnIBA7cH2peCAWU+2eCCPUUgySOfw9Se+aASej4xnpzmgBevykHA69Rn2BFL37jvkgkfTPrTRk556cEgdPwpflHBPOMc4/OgBflAUBTgHH8Rx9TRhR0Vs5ycbj+VAOMDnP8JIALH6UpwMnJz7jAHsMUAAx1C89MHnP/AAE0YHykgg/wg5G0+4ox3LE+xHX8RzSghuQWwAegyD9T1oAAFP3lI5weqk47ij+8uGAHBPODn0IoBB4Bw3r1o+9xn0xjkj8DQAegCkdeqnHHqaOg4UnPHygk89cmjvjqe+cDPvil6H69+B+lADcKBnn8MnOOwFHBOQOcZ5JH5gU4jBJJAHfHQfiKQ8854A9AR+ZoAT5WCnBBHTOVP40uFOcq2AcHOVz34NA+YZ3Y+gBz7Gk4OQGIx1I5IPsDQAEjONjYx15x6YzQQgwArHsMZIA9zS5HTJzjkd8euKbnAAyTnpuAUt+FACkAZwCfoSSfwpCEyeu7GSFOc+2KMlQcnJ9wBtHpR8vU8cZHbGKAEI4BIIPBGeCPqKQ/NgleQf4sruHp60uQSDzjqccg/rmjAPI9eoGefTGaAGEIeCOCcDdjKH+639P84aA0eTksF+8vp7j29ae+18jO1xgEg9vQ5pFZlALHAzgMOqn3H+c0AGBxgEqe3U5Pejb94hT7gZJOOOKaAyE5UlD83yggAetLkDJDnnnsAPxFAC4x1BzjHU5A9CKTCkcq3HIBJU/UilwTzk4+nGfXNN+9g7j1+ufxNABjPUH05yAfoaOQeRxjrjI+mfWk6k/Ng9OBnFIf7uT9CQMds4FAB06BtoPGBu2/U0HaOdpPPIGSSaD/AAqT149CRR93nJ/HAx+VACYUc4OSMHBPI9MUYz2OQMjOc/iKCO+4jj0HH40mOnzHjoOx+tABwRyCB26qaQgk4/h/H9DS57+/Uc/hg0nHI6HHqcj6dqAEOe3Q9O4GPU0h4Ax+OOeaXI6Dn34yaDwOefrx/KgBpCjnDEnrjv8AQUcd15HTnH5ilOOSSfp0x9KTIPTpjpgfnmgBODgnI9OopcfX8qTg89vbB/nS4Pp+lAAcn+7/AC4pRnHUY9Mf1ox/dT8uf50mPYfnz+VADvmweg9T1/KjkehPfHTFNH+0BnsTnI/CnDbxkHqTzxz+FACjPXjjoP8AHil+bPGMHr6/gKTBzyMr054BzR3GEJx9cL7UAO5P931PJHH4ClyeAAN3QZ4H4mm4AxtU9ewz9evNLgdRnJ5OM5P0GaAFyehx6nt+tLyM569Gxz+WaNo68humf8RSBRxuB7/e4x9cUAKDg54z+J/MGnAOOcjHYck/iDTccHcOBwc8Bh6g0vzdxxj/AIDj0zQAvPUY9T2/ICjJOMFcjjnAH8qBjjahAHpyAPfNHy4+UN1+6OTk9ScmgBST049u1AyBg4yOTjnp6E0AdcjnHbvjtzS4HVkIOcAnggehAoAACOTt59OnPTtTskc8ew6nj1BpuOmYzx0DcEY70vJzlSeMexB7CgA5POB+ZHJpcvnp9cnAI74xQARgbWAxnJGQfY0HPGwcDsM8fU0AKe20c44zwOe5xQP/AK56fz9KMdcDr1AJJJ/OjC/3SDjHfOPTBoAUZ55XJ44xj8M80o3DkkHuMc8dOc00gHGVII6Bsgg/QUYxwyttHZ+N3fg9aAHfN1GD6DODn3pSD1BXHUg8fypMZyMMAR971J6ijAGMJ8uMcZIAHqTQAuGP90eueAfxFBBIG3HP3c4HX1NJgY+QZB7DJOT1PzUu0jdgBifQ8nHbB4oAT6kEn9PxNO+dc5A99pBGD7kU3HIyCH/2uMZ7GjqAGUjBPDEg5HfigAz9MdB6596DnIPGMZx3z9KXKncp3YGB6BgfQijA7Lx/eHI44wSaAEOSeAAe/bA9qMEgH5SccZ4/Mig8YAQndxhSSB7kmjb6AljyduSTj0BoAO2MYPXPb8+tN5GcsCx645H4ZpcLnoSenHX1xjpRtHB24I7HIIPvigA59QT6DkY98ijBznCkcYBOTmkI7FTjPIcY3Y7jFGWyRjIIHbAPtkUAB65zjnLD0+gxSE55G0HjHQD9KU9gAfoOQMdiTTcD+BCRnkdTn15oAXLdBjjoe2fqKaykgn+I8HHIPtS4HO1frjOW9gPWkweOxxj/AHc+tADVZhgNuDKQAw7E+tISUYgjCtyQOQPp7VJ8+eV5xghv4x70xWw20kgjlS3VfY0AHPBUZXp05z7UfM2envk/yoOEJYYCnllzwPdc9qCOBgELnsM/qaAEJPGAM/7XAo6jtkfkfx60EY3bVO44JxnOfoaQhepGGxj1z7YoAXnBBx6Ejn8AaT5h0xn1HJx75o29Cy8+4IK++KTg5ypHPGcjI9aADnrgA+vv9KQ56/Lz17flxS4J6Btv6E+maTgYXDY9skL+dACcnoRnpzx/Kmn03DjnkDHPvTiO6qf+A9TnvzRgjOFycYJXqcfWgBM8H/x70z7UEleuMn05FJ6ZAyOh7j2xR1+9x35z/SgBOeuRj9fxFJ7/AMOfUA5+lL67gQPX+99KMezBevt6UAJlvx7/AE9sUfL/ALX60mG/hU8dcc4/OloADgfxMf8Aex+VL6/y7CkyR1I9OP5Uue/p0/8Ar0AA9vw29D9c0o2nnkfTApMk9xz1zkZ+lLknnIz3z0wPpQAcZPX60vcZPPQZoBPHzfT0H1pc443deoH9KAA5Hfvjn/61LjAOSSOpyR+mKAWHQqeMHtkde9KNw549gOg+tABjODk57Z6UoGcc/QDpSZ6nIxnkDOc/ypcsecj1Of6YoAXGfl3dD+XegDkjjj0PP60YJGB16ZPT1NJkEYHAHr60AO6Yyc44Gev40dAfmPPcgflxQCw4znPUDgH86UFgRyMngY6YPY0AJ7kn6HH9KcuDjkj6UnIzyPw5II7mg7j3/PIPPp2oAUYb+I8Hr9PWlz1GcdBx1/wpME9OD3PbA69KXJI2g9OmR+WaAAEfz9eaXcq8ZYjPBIGT+VHI4OPXilDbeMAk8cZGQfrQAmf97/gQAApQOAc+2Ow9xmgNj045AGc/maOcg5HPTjnPWgBRlscnAH8P9TRgNkBjn1Azj86Mlucj33Dr24xxSnJ43YA6bux98UAJ7Z4+uCB7UucEDcx9MgZJ98Ugyf4sjryOB2+tO5X5SQSeuPz4BoATIGeTyeeBx9MUpOQT83ptP3RjnigFvUE9Bj+XNIMjkEccDOQwI65zQAejAnGO2Mc9yDzRnd6/8Bx+RzS5JOQR7/3uentQSzdSOOOeOPTigBODkcD/AHeo9+aOPu4PTPXBI/ClySAAeP4c9B9aMnp6nPHTI+tADeAMEnk8FuW/IUEkAnJx+g+mKXccYLDnqVB59h3oBZTkHHpkEcehoAMEgknPHQ4A455xSYJCnd19MYOeO9Lls5yvbjBzQdxJJI9+Mkj8OKAE2g5G8cHqoyR+dJjJIyAcdR1+tKcnHOP7u7OAB24pMjpzgc/4YoAQ8YBOc9z3pG4Gc8HjnH5cU4E9M5z1xn+tIPXjjjP9OaAEII53HGOn+HejOQDnjHTt+PejDD5j9B6/iTSYJOeo9D1J9qAD738XI4wuOR+NIRnrhtvUMP0NKd3qOOxPb04o5IwDjH3c+vWgCMlCdr8j+Hdyyn0OKACmTu3AE5XuF7MPUU5gGHOM469vxIo3AAZJC5wp/iU9Nrf55oAQ8DOcDtnoB7UYPXPbnkbfr60g8xN3BZMFmOPuj1x6Uoz1yp44xnJoAQYYDJP4cA/Wk45I9cHHr+NKST/Fg9zg5P0xSEk98EcDd/8AWoATuR3I5x1oPGAcnuCep+uKBjH6ijJGRnGTzzgf40AJkL68+v8A9akPrk89uwp3zDpj8j0puT1yB6A+v40AJxx6enY0mSef8P607J68DPXrz9KQn/630HagBvByuCPXbj+tHBOPypSSRxgY5G7oM/SjPbI9+c5PtQAh44DH/gXFGD6mgZ9SfoOKKADJP3h+ZH50oJ/u8U35T3I+lLnt2oAUdxtAHtxjHseaXj+FT2+7gUg6j26E8/maXOOnPpnnn8KAF+ij8Op+tKMZGQN3qfvCk6Dnt26j8hRkHHPPb0FADuccqMjOM449+KOSQCMj0bnIx14pAFPr+Py0ueDnIB67eCfoTQA7J4yuAO/RfpjrQM8YUDHp24pAwOAB04BNHIwAzegzz+dADiCOQPrjGc0o9cLu9cc/Sm8D+/8AQ8/lS4x2P9PyoAXr95Bu/wDQfyowSPm9eAeeB3pdp4yx4zjHA/GgrkAZIA5yOtAB3yQQMcZ6H8KXn0IXPbBAHpzRjPJ/TrRgD+XPP40AHA+6p9wOBz9aUEckKC2OSv3j7UdMAEn3b+mKXPoT9D0FABgdSo3HIGRyB6DFHPG5eeoDY4I+lAA7sc8jjp9aMDoTgDpg0ALyM7hx74wfypy7hxjIx14x9Kb8h6kj/d4IPrRkDoTjp7/hQAvPAVeASMDGAPxpcHqoyccgYGfds00bR6kD1OWP1oG0ZG4kHnnqPYUAOIA7AH2HP50dMZHzDpkcqe/NG5R0LE/XjHr9aMg85bjOAvA/GgA653KAckc85x/EMUuT8wKgjA+9ghvb1oAz6geg4Jo2k5+9zyTxn8KAE+Y42r8vT0A9iKXpwF+oXjr1zmlCP2HTpzz9c+tL5Tnsx+pBx9KAGYHOFyT2GPm/pS8Zxt+bHU4yO+Kf5MvOA2TwckYH0FL5EzHO1sjjqMY9aAI/Tcq7hyN/JB6cYozwyspIJ4DdCPWpfss56oxx6Moz9aPsl23BjPXnDDNAEPzcdcevGM+mOtIQw+VVwP4tpAK++D2qyLO8P/LInjH3lzR9gveAImOOhZ1z+JoArYxwMEnBIXAJ9+aD3+XLY/E46CrQ06+Of3bHPPLLmlGm6h18ls+7rgfTmgCnnGMrg+mMlc/Sk6g7lzg8A/z4q8NL1JukLZH+2uOfXmj+yNUIx5LfUOg/rQBQHXkAgj/gJ9hQd2eAcY5K4wvtzWgNH1Y8fZyB/sugP4EmlGi6v0+zsR7umfx5oAzOB90DryBgEZ780pxg/ICevHU/nWl/YesHj7MxHqXjz+YNH9ha2c/6MefV0wPpzQBmYXj5Vz79celI25gc/K2MYODkehxxWr/YOt/8+renEkePyzR/wj2uMB/orAg8YeLP480AZCM4OGJDKRhgOh7A54ppJTIYYX26VtHw9rx/5decEMN8e1h6HBpq+HvEPT7EwHVSZYiwPvzQBlZbAwOO+Ow/Gk4H3VyfbAz71qnw54gBBWyxnqoljwp9V56Uv/COeIMf8ehyef8AWR8ew5oAyD3PGcY46/Sk54yOSPxFbB8OeIe1owzwf3ke38s1Uu9K1KxVXureWNGIUOGDJn0YrmgCj/vfkf8A61Ic+gK++CG9gKUFT0Lfhwf1pvynI+b6jOR+OMUAL83I2jb+GAPTFNOMDAA9h/Ol6EAgnHQ4z+ZFH59e5yc/hQAnAzhTu9R3xR1HQZPfuPag5/2j69SB+VIcZ6t9B0/IUAHJ6gf8C/8ArUuPpTcA+v4f1owtADjk85A/XpSf59s+tBDAcBR9Pl/nRz/9f/69AC+i5PP0wfwpRkd88444/Ckwe+M9yOoP1pQD3x36kNQAo9Tx3AAHH1peTjng+xOfxpADk9MYA6j+VLzn7o/QYP060AHLdx6885HpTvm9fYcZA/Ck+bsFA9iBx7Uc9gM9sYAJ/wBo0ALnPHbvxn8cUcDjrnjIGCcUo6YwufwDD6GjnjcBnvyDg9sEUAKgAyWwcg8jsPSliR5UEjSONxZgFwAFzx2pr5Eb8YLEIoyOWbgVZACqqjoqhR9AMV7GWYeNRylNXR52OrSgkokXk/8ATab81/wo8n/ptN+a/wCFTUenrnA+vpXt/VKH8qPL+sVf5mQ+T/02m/Nf8KPJ/wCm035r/hW1beHvEt2gkg0q5ZCMhnURAj28wiq15purWBAvbK4t8nAMkbbCfQOPl/WslRwrdklct1K6V22Z3k/9NpvzX/Cjyf8AptN+a/4VNSenucDHUn0Fa/VKH8qI+sVf5mReT/02m/Nf8KPJ/wCm0v5r/hWzbeH/ABHeIHt9Mu2Q8hmTywR7GTApLrQfENknmXWmXaIOrhRIqj1Yx5xWPssJe2ly/aYi17sx/J/6bTfmv+FHk/8ATab81/wqYc9OecVYtrHULzzPslpcXHl7fM8iNpNm7ON20Vo8Nh0ruKJVes3ZSZR8n/ptN+a/4UeT/wBNpvzX/CtR9G12NHkk0y+REUs7NbyBVUckkkVRpRw+Hl8KTCVetH4myLySP+W0v5r/AIUeU3/PaX/x3/Cr0Wn6pcIJYLC8miJwJIbeV0OOOGUYpZtN1W3jaa4sLyGJcbpJoJEQZ4GWYYo+r4a9rK4/bV7Xuyj5b/8APaX/AMd/wpdkg6Ty/wDjv+FW7ax1G88z7JaXFx5ePM8iJ5Nuem7aKsf2J4h/6BWof+A0v+FJ0cKnZpAqtdq6bMzE3/PeX8k/wpf3/wDz3l/JP8K0v7D8Q/8AQK1D/wABpf8ACqlxa3lpIIrqCWCUqHCTIyMVPQ4anGhhpO0UmJ1qy1bZDuuB0uJfyT/Cl33Xa5l/JP8ACrtppOs30Zms7C5uIgxQvEhKhhgkZqVtA8SL97Sb4fSF2/kKl0cKnZ2KVTEPW7M7zLsf8vUv5J/hS+deDpdTflH/APE1bOj68oJbS9RAAySbWbAH/fNUiCCwYEMpwwYEEH0INVHD4aXwpEyrVo7tjxcXw/5e5vyj/wDiad9qvx0u5v8AvmP/AOJqKtKLQfEM8UU0OmXkkUqh43SM7WU9CDRLD4aHxJIca1aXwtlP7ZqI/wCXyb/vmP8A+Jpft2pjpeS/98x//E1Nd6TrNjF515YXNvFvWMPMuFLtnCg1Spxw2HmrxSYpVq0XZtk/2/Vf+f2X/vmP/wCJp39oasOl9L/3xF/8TVaprW0vL2UQWkEk8xVnCRKWbaOp4pvC0EruKEsRWel2Sf2lrA6X0v8A3xF/8TS/2nrI/wCX6X/viL/4mrP/AAjniYf8wm9P0jNRz6Jr1tDJcXGm3cUMQ3SSSIQqj1JrNUsI3ZWNPaYhb3I/7V1odL+b/viL/wCJo/tbXO2oTf8AfEP/AMTVKtRfD/iRlR00q8ZHUOjLGcFSMgg1UsPhofEkiY1q0vhbZD/bGu/9BCb/AL4h/wDiaX+2Nd/6CM3/AHxD/wDE0y703VLARG9s57cSkrH5y7d5AyQKjtrK/vDILS1uLgxgGQQRs+0HgE7RQsPhmuaysHt69+W7uT/2zr3bUZv++If/AImj+2fEH/QSm/74h/8Aiak/sDxH1Ol3oAGSWhYADrkk1m+vscH8KI4fDT+FJhKvXju2Xv7a8Qf9BKb/AL9w/wDxNH9teIP+glN/3xD/APE1Roq/qlD+VE/Wa38xdbW9dUMx1KbhST+7h6Dn+7W1qM9zF4YhGoSedeXyxEMygFTIfMAIXj5Rj8a5y1g+2X+m2AGftE4aUf8ATCL94/6DFafi66aW+gtV/wBXaxBiAQAHk56fTj8a8DMlTjNQgkrbnrYJzlHnm9zm8tjBYDHHTP4YoJJ7nI9jge5owcfKoyPcAH15oOecAZ9RgFuO5NeWd43OMjP146/hRyO4z9MDBpe3K+npwfQGk+oAPpkEfpQAnI5yR6ED+dBzjOePpRjrnGPTI5+tIfTAI+o/lQAceufrzRxSHnGP6CnUANwB2P48mnAcZx/P+VN+7zuH1P5Uvv8Alx0/GgBQFIyd2R0zxj8KUAHrn8Mik64OQM9MDP60uc9T+QznHbmgAwPfHrzz+NLjpz9D7fUUc/3voPT8KUZHGQfXPU0AGAOgOPxOPel4x0bHpnOfoKTO3+LPbOMZ70uf4s+/Ixj8qAFwOCM59yf1BpVAODyMcjqPzBpAMYORz2wCPXOabPKIYJZc/NtOzkcluBQBBDNJcX7xhj5EJLYGMFl4B/OtSsvR4yIp5iOXcIM9eOTWpX1mW0uSgn31PAxs+aq12HRxyzyRRQo0ksriONEGWd26ACvWPDXhCy0pIrq+SO41JgGJYBo7bjhYweMjuf8AJxfh9oqOZtanQHYWt7EMOh/jk/oPxr0OeaK3hmnmYLFDG0kjH+FVGSa87MMZKUvYw2OvB4dKPtJj+n0Haub8b3ItvDuoAgFrgxW8e7szsDkflXn2ueLNW1a5doZ57WyViIIYZGjLKDw8jJg5Ppmsy41fV7u0jsrq7lnt4pfOjEp3urAY++fmI+tGHyypGUZyYquNg04pFOOKSaSOGBGeWRhHEicszN0Ar1zw14SstJhiuLyOO41NwHd5FDLASPuQg+nc1z3w90dZpbnWJlBWBjb2gI/5aEfO/wCHQV6ScAEnAABJJ7YpZli5Sl7KHTceCwyS9pMX+XtQeRjGc9jXkOueMNZudTlk067kt7S1kZLZY8AS7G5kkBHO709K9VsJ3ubKxuHADz20Mr44G50DHFcFfCzoRjKfU7KWIjVbjHoeeePdBtLMW+qWcSwieXybtIwFQyMCyyYHc9DVv4aL+719uP8AW2YyO+Ekra8dKG8N3xPVJrMrn189BWP8NP8AUa9/13tP/QHrvVSU8A7vZ2/I43TUcWrHW682zRdZb0sp/wD0EivC4o5Jmghj5klZIYxjks5CgcV7f4mbboGvMOosZj+leceBdON9raXDqDDpyee5I4MrDbGPw61WX1FSoVJvoLFxc6sIo9R0uxj03TrCyjAAtoEjOO74yx/PNcH8RNVLzWekRP8ALEBdXeO7H/VoR+teh3VzDZ29zdTHbFbxvLIfZRnFeDaheTaheX1/KTvuZZJ8f3VP3VH0FZZbSdWq6sun5mmNqezp+zXU9M+Hdt5ejXNyRg3d5IR67Yv3Yrs+B34rK8O2n2LRNIt8YZbWNn93cbyf1rM8dXN1b6DMtsJd1xPBA7QhtyRkl2OV57YP1rjqXxGJavuzohalRT7I6fcp/jX8xXi/jC8F34h1RlYNHAUtoznIHlLhv1zWMZb4cmW8Udclp1AHbJNNiikuJYIVy0lxMkYJ5JeRgMk17mFwP1aTqOVzy8RivbJRSsezeEbQWnh7SUxhpojcv6kzHeCfwxW48kUYBkdEBOAXYLz6c02GJYYYYV4SKNI1HoFAUCvM/iNdPJqWn2YY+Xb2xnZc8F5W2hj7gD9a8SlSeLrtX3PUqTVCle2x6hkMAQQQehBBBrkvGWgWN7pt3qCRJHfWcRmEqKAZUXkpJjr7elM+Hr3T6HIZmkaMXky2/mEnCALkLntnpWt4pu47PQdXkcgF4DDGD/E8vyACiMZ0cQoReqdgk1Uo80l0PE40M8sMKgnz5I4hj/poQvH519AW0K29vawKABDDFEAOPuKFrxfwratd69osWMpHN575/uRKT/PFe3V35vO84w8jky+C5XI4D4kXW230iyB/1k0lxIO+I12r/M15vXVePbo3GvtB/DZ20MQ/3n/eH+dcrXqYCHJQj5nBipc1V+Qelek/DvS9lveatKvzzsbW2J7RIfnI+p4/4DXnUEEt1Pb20IzLcSxwRj/akbaD+Fe8WFnBp1jZ2cQAjtoUj44yVHLH68k1y5pW5YKmup0YCleTm+hY86HzfJ8xPN2b/L3DFT zjdt64rE8X/wDIt65/17H+YrmvDt8dX8aaxfA5iW1lht/+uMciRqR7Hk/jXTeL/wDkW9c/69j/ADFeOqTo1oRb7Ho+09pSk/U8UOcEA4JUj1Fe66BN5+i6NLnO6ygB+qrs/pXhf8u9exeB5/P8OaeM5MDTW5P+45P9a9bNo3pxl5nn5e/fa8jA+JbDGhqezXL9/wC6BW34I0v+ztFhnkQrcagftUgZdrKh4RD9B/Op/Enh1tek0UiVEis7oyXKvuzJCQMqmO/FbVxPb2FpNcSkJb2sLO3oqIvQfyFeXLEc2HhRj8zujStWlVlsct461w2Fgun274u9QDKxUkNHbdGbj16D8a8p9B6cVd1bUrjV9QvL+bIMzYjQ/wDLOJeEXHsKpV9Fg8P7Cko9XuePiazqzb6BRRVa9n+z20rg4ZhsT13NXRUmoRcmYwi5yUUdD4QhWW71fVZP9Vap9jgbPGR+8kI/T86wLueW5u728Zs+dM0pA+8EJ449AMA10yR/2L4Rt4R8l1fIN3rvuPmbPuF4rklLj5SAu3hW7iviqlR1Jub6n1EIqEVFCkADgnBPHVutIQO+7n34P0FJh03ddoGTt6AetHT5g2fTjgD1zWZQuE6nPA4Bz+opOO4IP02nFGP4s4z7cH9aOT/Fx+dACYByCGA/FQfoaTjpjj15/WlJzxkA+vX9DSEnpn9OvvigAIA6A++TmjC+n60YI6/y25HpRj/ZoATcQcMQfQ4/mDTvm4GBj68/lTSNxIYYbj05Htil4B2k5U9CeDjuDjvQAoznOVx7cfkKU5PTaPrgcUmAD0OBwCOQKXp91T+HOPfmgBR9V/kM+5peR6dev/16T/dU5PX3P0pQBxnIYcH/AOvQAo3f7OcE8YYfhmjP0/DnA96Q+6nr7jA9eKOvVDtz9M+9ADgCSPun6+v0FZ2rSjMMC9v3jfjwBWmhXljgBRnPoBWFlru9BP8Ay0lA+ig1UY80lFdRN8qub1nF5VtbpjnaGb6tyanOe3XoPqeKXgZx+FSWyCS5tUb7rzxKfoXFfbRXs4WXRHy8nzzv3Z7hoNmLDR9KtQMGO2jL/wC/IPMb9SayPHl09v4fnjQ4a6uILdvdGbLD9K6lQAFA4AAA/DiuR+IFrdXOjRSQRtItrdJNMEGSI8FS2Bzgd6+Sw7U8RFy7n0NVctFqPY8n54z/AJNITgE+gJp0SSTyLFAjyysQqpEpZiScYwKJonieWCVSkiExyKeqnoQcV9hdHzlnue3eF7NbLQtJhAG5oFmk93l+cn9aPFF21loGszoSHFuYkI65lYRcfnWjZgLaWKjottAB9AgFc/46WZ/Dl6IkZx5tuZNgJKxhwS2B+FfG0/3mIXN1f6n0cvcou3Y8fRGkMcSDLyMkSD1diFAH1r6BtIfs9pZwf88YIY/++VC15X4J0OXUdQi1GZCLGwcSKSuFluByqrnsvU/hXrXeu/NaynNU49DlwFNxi5PqcZ8RLpYtGt7XPz3d3EMf7MWZCf0FUPhp9zxCP+mtkf8Ax2SsPxxqg1DWWgicNb6fGbcYOQZycyEfoPwra+Gh/wCRhH+1Yn9JK1dJ08A0+uv4manz4tNdDqfFjBfDmvE/8+cmT6ZxzVDwLppsNEjnkX9/qEhunPQ+X92MH8OfxrqJEjlR45EV0cYdHUMrD0IPFB8uKMn5UijQk8AKiKPbsK8lVmqbpLq7noOmvaKo+hw/xC1XyLO20mNiJL4mWfHaCM9Dj1P8q85sYGur3T7VRkz3UEeP9kuN36Zq3rupvq+q397k7GkMUAzkCGPKrj69fxrR8E2v2rxFZEjK2sctyc9mUbV/nX0lKn9Vwrb3tc8apL29ddj2JVVFRFGFRVVQPQDFO9aDivJPFmvaqNd1G3t9QuIbe3McKxxSbAGVQWJxz1r53DYeWJnyJnsVqyoxu0dj48uRb6BOn8d3PBbr643eYf5V5/4RtPtXiHSlIysLtcv7CJSR+uKyJ72+utoubu4nAO5RNK7gHpuAJxXafDi0332q3pHENulshP8Aelbef5D86932LweFkm9Tyuf6xiE0tD02uc1Xwfous3pvrt7xZWRI2WGYIhVM44Kn1ravrlbOyvbs4xb28s3PTKKWFcR4F1vXNTvtViv7p54ltxcKrhR5cjSAYTHbk8V4dGFTklVg7WPUqzg5KnJXudrHHp2k2KogjtrKziPU4SNF5JJNeV+LPE51yZba0JGm2z7kLAh55enmEHsP4a9M1+H7Rousw4zvsp+vqF3V4UpyFOOoz9K9LK6MJt1ZatHHj6koJQWzO3+HNr5upajeMOLa2WJT6PK2T+gr1HoK4v4d2nlaRdXRGGvLtyM90iGwYrptYufsmlarcZIMVpOykdmKEKfzrixsva4lr5HRho+zoJ/M8U1i6N7q2rXJORLdzbf91W2gVRpiuCASwLHG7kck807n0Oc9O/0r6qCUYJdjwZNyk33O0+H2li61KfUZFzHp6bYs9DPKMZH0GfzrtvFmpf2Zol9IrbZ7hfstvg8+ZLxkfQZP4U/wtpf9k6NYwMuLiVftFzxz5snzEH6cD8KuappOl6xFFDfwebHFJ5sY3Mu18Fcgr9a+WxGIjUxPPPZHvUaLhR5Y7s8++G6D+0tVb+5ZIv5yDoPwrs/F/wDyLeuf9ex/mKs6XoOjaM076fb+U0yospLsxKrkgfNVbxf/AMi3rn/Xsf5iipWjWxSnHa6CnSdKg4Pc8V5r1D4cTBtK1C37wXzPj0Eqg/0ry+vSPhtA4tdZuDnbJcQxKOxMaHJ/WvbzNL6u/VHl4Fv22h3+a86+IWtE+Rotu4x8s99g9uscZ/ma9BmkWGGeZvuxRPI30VSxrwG6uZby6u7uZi0lxPJKzHqdx4/TFeTllBVKnPLZHo46q4Q5V1IvT1NFGR17f1robPwfr2o2dtf2TWssNwu5QZPLdSDgqQ3pX0dSrCmrzdkeLGnKbtFHO1Uih/tXWdL01fmiMqtPt/uj535+grt5fCR0azudW8RXEMdnZrvFtbvulupP4YQ/QbjxWP4MVr/Utc1+aKKJcNFGkahYoy+GIUD+6AB+NeJmGNjOPs6bPUweGlB880TeLroPd21pGQEtYtzf3d78DH0H865rDHP94jBycqc/wmrN9c/a7u7usEtNM7DuQoOFGDx0xVU8jpg/kR+FeEeqNV2UgMWBU/KRgkH60hJU/dXaegX7uPUCng9Dgg4K4fGGB7Gm7sHblgByM4yM+tABjoeCPrz+VHPTgEY9qaflbphSM4A4z7UvQDb8w798e9ABzg/d9s4H60c4wdv4Hp+NGBzwST1IHpSY74OR/nBoABu9s9+QaMfT86ML3H0B4xS4Hp+lAEZXunHrjoPwpxUMcEjcQCCDwwHANKWJ6449T/hSMM4IOOckEfyoAXldoJBB5BHTOOVINLjHRvbqB1oI3KM/KSAc9iB0IpBvXaSRzkDHTI7H3oAd26+/QdqUdueD2wMfj3pvOeenp3xSgZP0HQ/e/wAKAHDnGCTnOMY7cY5pQRk/McjqRjI9sU05Pcc9c8ce2KenzEAkYHNAEF/L5NqyjhpSUHTODyap6RFvuGftEhP4njFM1OXzLjYDxENv/Ajyav6RHtt3kI5kc/kvArvy+n7SsvLU5cXPkpNmlQGKMrr95GVx25U5oor6166Hzq0Pd9H1K31bTrO9hYHzY180ZGY5QMOjD2NXyARg4IPBB5B+teEabrOr6PI8mn3Ji8zBlRlDxOfVkPGa6RPiLrqoA9nYO4GN371cn1IBr5qtldRS/d6o9qljocqUz0eeKw0+C8vI7a2haKCWVnSOND8qk8sBXg0jtM00jYJmeSQk9fnYtn9a3NU8V+ItWjkguLlY7aTh4LZAisv91m+8RWF6en8q9PAYWdBNzerOHFV41WuTZHtXhfV4NX0q1kVgLi3Rbe6jz8yOg25x6HqK3CAQQwBBGCGGQQeoxXgdjqOo6ZP9psZ3hmxtJUgq6+jqeCK6aL4heJEULJDYysBy7I6En1whxXnV8rqc96ex2UcdDlSmeqpHFEoSJERB0WNQqj6AcVzHinxRbaPbS21tIsmpzKUjRSD9nDDHmSfTsK4W88beKbxXQXMdtGwwRaxhX/7+Nlq5xmd2Z3LM7ks7uSzMfUk81ph8rkpc1Z/Imtj01y0xCSSWJLMSWYnlmJOSSa9B+GnD+IP+3L/2pXn1aek65quiG6OnvEpufLEnmxh/uZxjP1Neti6UqtF04nBh6kadRTke6VynjjVjp+jvbxPtudQY28eDyIsZkb8uPxrif+E78Xn/AJeLX/wFjrI1TV9U1iaKbUJlkeKPy49kaxqqk7j8q8Zrx8PllSNRSqWsj0a2OhKDUOpngYGB6ivQfhtakza1fHoqw2q59TmQkfpXn9bOleJtb0a3e2sTbrG8rSt5kQdizcck16+Lpzq0nCnuzzsNONOopSPbsVSm0nR7iRpZ7C1klY5Z3iQsx9ScV5d/wnviz/npZ/8AgOP8aP8AhPfFh/5aWn/gOv8AjXhLLMSndfmeq8dRe47x0mn2+q29pZWsMIgtVefyVCgySEkAgegx+ddb8PrXydDa4I+a9uppef7qHyh/I15hf313qV3Pe3TKZ59u8ou1flUKMCtSy8W+JNOtYLO0ntkt4F2RK1tGxAJJJJNenWwtSeHjSjv1OGliIRrOo0eieOLo23h29VTh7mSG1X3DuCw/LNc38Nl/0rWn/uwW6/mxP9K5fVPEGt6zFDDqE8ckcUnnRrHCkWHwVySv1NR6XrWraK9w+nSpG04VZfMjWTIXJGN1RTwU44aVLqypYqMq6n0R7jcoJLa6j/56QSp/30pFfPjKYwyd4i6Y7kplf6V0h8ceMD/y+QD6WsXNc67F5HkY/O8jSMcDBZm3n5enWry/C1MPzc/UnF4iFa3L0PcPDlqLLQ9Ht8ci1jdv96QeYf51qsqOrI6qysCGVwCpB7EGvHV8ceLUVUW5tQqqFUfZY+ABgCl/4Trxh/z9Wv8A4Cx150stxEpOWmvmdscdSjGx6Frtho1ppGr3Q0+yDx2k2xvJjBDsuxSMD1IrzTwlpZ1TWbKN13QWpW7usjgrHyo/E4/I0moeKvEeqWstleXMLW8pXescCRltp3AbhzVfS9d1fRftB0+SGM3BTzTJCkrEJnABbtXfQw1alQlFu8nscdWvSnVi+iPc/auD1bx+9hqF/Z29hHNFaymHzWmI3uoAbAA7HI/Cua/4Trxf/wA/VtyCDi1jB/CubZndmdyS7szux5JZuSc1hhcs5ZN1lc1r466SpnuehanJq+l2eoSQiF5xJmMNuA2uUyCfXFVPF/8AyLeuf9ex/mK8zs/FvibT7W3s7S5gS3gXZGrW8bMBknljSXvizxNqFtPaXV3E9vOmyVFt40LL6bhzURy2rGtzK1rmjx0HDle5h/jjvmvYfA1r9m8PWTHrdSTXRz/ttgfyrx3APXoc5roLfxj4ptLe3tbe4t0ggjWKNfs0ZIVRgc16OOoTr01Cn3OLC1Y0pc0j0zxbdG08PaxKrbXaDyYz6tIwXH5ZryWz0TWbyBZ7aAGH5liLsFaUrwRGD+XaptR8Sa/q1v8AZL+6SS38xJdiQxxncnIOV5rS03xBp9vY29vcG4jkhhEDiKLzDLGilUMT7gFb14NYYehVwlLRXbZrVq08RO70SRy7B1LK6lWUsrKwwwYHBBBr2DwMCvhvTyT1e5cE/wB0ysa8kvLn7Tc3t2V2efK020nO0Htmuo8S+JG8N+FtJ8P2jldWvLCNrkqebaCXLMcj+Jug9uajNZfuYp7lYCP7xtbHO/EbxX/bmpf2daP/AMS3TJHQMrZW5uB8rScdh0X8T3rRgQaH4Pt0PyXN+MtwQ2+4yf0XiuB0iyOo6np1njKy3CCT2jB3P+ma73xbdg3FpYxn5baPzHAxwzDCjHsP5184e0cuQvUbvocYGO+etIecEng88AEH60H1yPpzkH3o+Yc8YPcjOfoBQAnyt07cAjGePrSH5sDALDt/iKUkn+meOKM8e3PJ6D8qAGllzsYnGQQG6qR2NIxVSGUgBj8yjgZ9UzTjtYDI59ec8dqa20gLkYJ4z95D6GgAPAyTx1PTC/gKPfJ+nGDR90DHVeo6/wDAhntSdeePpzmgA4bkk/hRgeg/Wg/5zRg0AHT7q/lilHXPf/Pek6dCfxwf5UZ/zxj8qAFYPgbRjB3EHs3qMUv3lx0Y4Oexx0NJxwcnJ9OAfrR1BxnHJwDyD6rn9aAAZGAwzkkZPf2p/PGM47Y4A9qarbgQeTgAhuh/+v6UinHytwR0yeaAJOn3V/Lt+dOLLDFJKQMIpPFM5GBk4YgfN69etVdUl2QxwKeXOW/3V6UAZLMzuzHJZ2JPuSa6m3j8qCCPHCoOnqRk1ymcEEdjUv2m5/57Sf8AfRrvweKjhm21e5y4qg66STtY6vBowa5P7Tdf89pP++jVvTo77Ub+wsIrh1kvLiK3RiWIUyMFyRXp/wBrx/lOD+zpfzHQ0fnVLXdD1XRtXh0iK8e+kuEge2kt1cCbzWKYVQW6EEde1O8SaJeeG30yKTVVupry2NxIsG4LAQ2wrv3HPOecDpR/a8f5Q/s6X8xbwTng8e1HNUfDujajr1xKpvzZWcBjWe8n3tGssrbI4lAIy7HoM/yrMv49Q06+vrCaaTzbS4lt3wzDJRiM496P7Xj/ACsP7Ol/MdDg+howfQ1FF4c1ibw3/wAJBFflmHnSGwAbzzawv5bzqc8qD1+Ws+WxvYNCsdakvnAvb2e1t7b5tzLAoLy784xk46Uf2vD+Vh/Z0u5q4PoaMH9M1lRWF7JoV7rrXzxxwX0NhFCQxaeR08wlW3fwj2NEFjeS6JqOtvftFHaXdvZRRHcWuJpQXKqcjG0cng0f2vD+Vh/Z0v5jVx/n0orO0TTptVj1e5uNVeys9LtkuLido3myXcRrGqKy8ntzTLyPSILeSS08RXN1cKU2QNYSwBgTgnzGlI469KP7Xh/Kw/s6X8xqYorF0iz1XWL2O0guGQbXlubiV2ENtboNzzSt6Af55qbX7C+0LUDY/wBoNdRtb291BcRhkSaGdN6sFJP86P7Xh/Kw/s6X8xqc0YNZ2laXe31rdaleamNP0q2dYpLqfzJGkmYZEVvEpBZvXkY9akubHTjYXV9pniU3D2jRiW0vITZ3Lo5274A0rBvcDmj+14fysP7Ol/MXcH0NFY+mJbXrNHe6zcWcheNLdUtpLkzM5xj5XXFaOt6TYaLLf2beI5p9QtNg+zpYyojyNtO0ymUgYB547Uf2vD+Vh/Z0v5ifH+eaOemOaybOxvrvSdc1dr54otMa0jVGDMbma4YrsRsgAgDJ606w0++vtL17VWv3hh0lLbhgzGeWd9ixqQwwe9H9rw/lYf2dL+Y1Mfn6Uc5xWZoOn3WszX4k1F7S2sLGe/urhkeUJFFjICKw5OeOa0LfRLTUYdUfTPEkk82n2Ut/JHc2U1sjQxYz+9MjAH0yKP7Xh/Kw/s6X8w/B9DRisfQ7PUNb1Oz0yK8kh+0M2+VtzLFGil2dlBHQD1qC3jvbrUodOtrqSRp7xbSGQFsPufyw+0Hp360f2vD+Vh/Z0v5jfox68fWq+uaBquj6hp1mmofbYNQZUtLu33COSTzPJdMBjyp4IzWdrFreaVq19pK3st09pP8AZzJGGXzJBjIVck9eKP7Xh/Kw/s6X8xs8jPB4x+tGD6VDNo9tpghi1zxDLaX8iLI9laW0l3Lbq4youG8xFDeoGTWbrFtLpk8EcGrxX9tcW8dzb3FrIRlHyNssZJKsO4NH9rw/lYf2dL+Y2OfQ0c+hrlPtV3/z3l/76NH2q7/57y/99Gj+14fysP7Ol/MdXg+howfQ1laJYX2szX6fbnt4bGwudQuJnDOFjhXOMAjknA61HodpqGt6pZabHdvCblm8yZyzLFGil3kIyOAAT1o/teH8rD+zpfzGzR+fPsaryeHtZj8R2fh/7cWF48P2W9XcYJbaVd4uEAb7uM557VkmHUZNSbTLKea6ma7a0tym5fPcPsBVSeM/Wj+14fysP7Ol/Mb3cDvQMkhQCWJAUAZLE9gBzUcmlaNaXK2N/wCLSl7uEU5tbOW5tbeXOCsk/mrnHfCms6e91nQ7vUbG01YOBIIzdWMoeOZF5Vo5VycH60nm8LaRY1l0u50EhttFQXuqBDcKA9jprY86eTqr3K9ViHU5wT9Oa42+vbzULq4vbuQyXFxI0kjk9z2A9B0FQySySu8sru8jnc7uxZmJ7kmmda8fEYmeIlzSPRo0I0Y2idx8PrINdajqUg/d2sIgjY9N8nLEfQD9aqahcNeX17ckf62ZihbHMa/IvGfQCugso/7H8HJ/DcaghY8YJNzx+YWuV4PBJGDj5eDx7muY3F5HG3Kn0xg+1J9BgexHy/gaT2yegzjjijC8D5v5/maADp0GT6dMjueaQ+qrknv3I9OeKOB6n68/likOBlvm9xjgfQCgBcf99fyprLn7wIIHGcZ/MUuR15H5c/XvR17nHt/9egBCMhQTlcAZ6FW9Dj9KTDAHOCU5x3x/e+lB+YEZwemRxx15pAGwN38JwGB5U+/1oAXjoAce3pRx7U0bslcAlck44AFO3f7v60ABJH8Q/DijtnIpMHuvvyQeKUZ9Bj6j+VAC8+v6Zz9KXJPJIz05Gfw4pvPp0+gx+FL838Kj8MDj15oAXqCM8ZycD5lYD7w/qKFYOOVUn0Pcd/fPpSdj/T/Gl2r1IPP3sY3D/aHrQBJF94gHIUZB749GrDvZvOuJWByoOxfTA4rbSRPmBwT6+vvSGOyBGYI8Hj7ikZ9D70Ac5RXR+VZ/8+0WPXYtHlWn/PtF/wB8oP50Ac5W/wCE73TNM1iLUb+TZHZ291NAAjOXufKZYlwoPc9ak8qz/wCfeL/vlB+pp3lWXT7PF/3ylAGqPEujppGj3QkkfxLb2t1pauyMUtYp52ka73EYLBWKr1xnPasfxTqOn6rrMZsZf9AtrSx062mkVxmKCMIZCCN3XJ6VIIbHvbR54B+RTj8qcIrDvaxj/gCdPWgC5P4n0bToLHR9L023vtPsJYrs3N21zFJdX4wWnKxOvA6ICOAPesvxde6VqWuXeo6bIXhvY4LiYFXXZctGPNXDjsasiOw6/ZYtvrsTJP4U4R6f3s4iP9yMUAWp/FNtYal4UbTG+0WOj6TBYXKMrKt0s4L3UZVwOuSPwqp4u1LQ7oaHp+hSSPpmnWku0SoyMJ55WlcEMB04H4U/Zpn/AD5xE9/kjA/WnBdKxxZxEk/884wPpzQAkE+j6l4X07Rm1SHTbyx1C7u51vI5jBdibAR1khVyCgGMbe9VtX1HSotG07w9pc0lzHb3kuoX140ZiS4uXTy1ESN821Rxk4z6VdxpHexj+nlxn9RTh/Y3ewjGByPLjOPfjigCrpOvxaL4a1KGwuGj1q/1O334j3BbKBCwbc4K8sSMVjajrOr6t5H2+5M3kBxDlI027sZ+4B6CulB0TPNhFg/d/dRHPvinBtB/6B8RH/XKHr9OtAFW31vRdE0hdPsrSDUbjU4w+ty3BuYkABzHaxGNkbaOrc4J9cVD4p1fStZt/DV1bKkV7Bp5sb+3RZdkQgbEIR5CSRj3NaYfQB006Ejv+6hzj1pwk8PZwNMjYnqPJh/PmgCjBdaLqvhjT9Em1CLTb3TL65u0a6SZrW7WcAHLwqxDD/drL1FPDNpZR2ljLJf6k0vmXF+FkhtoowMCG3jcgnPdio9q6QTeHB/zDIc/9cYevocmnifwz/0Cocg8jyIDj8aAOT8PTabb63o9xqUhSyt7qOe4baznbF84AVcnqBVbVL19S1HU79z813dTT/g7kgV24uPDQ66TF04/cQH+VOFz4X76RDz0PkW/J+maAMbTrrR7zwtc6FLqMWnXv9qrqJe7jla2ukEXlhC8KswK/wC7/wDWg1C/0iy0FPD+mXT3jz366hqV4ImhgYxx+XHBCr/OVGckkDn9OiF14T4/4k8RA6nyIAR+BNOF34TPA0aI49Le3H8zQBzug63b6JoniNre4CazfSWNvaq0IkUWqOXmLeYpTnpgirQ8VS3vhrxJY6ldRm9uJtP+wxw20cG5FdmlLPbooIxjgmtn7b4R/wCgLEe2Ps9v/MnFL9u8HjH/ABJIs+n2aD/GgDlvC2qafpEmuXtw5W6/se7t9NUKzb7mfEWMgccE8movCd7pmm65Y6hqLlILJZ7hNqs5a4SNvKXCjucV2H2/wf30OLPp9mtj+ZBpRqHg3voUXti2tjn8jQBleF/E2jo72/iJpPs9tqR13TZEQyGK8DMzwkKCdsmefcVzK6n/AMTxdXmHm41Rb+RCAS6ibzSK7z+0PBn/AEAosdMi2t/yxnNJ/aHg3/oBRY7n7NbA/Xk0AZVzdaQdb1LxDZeJLOKG/ead4bnT3ub+MSne0KwSxmEnsD5grH8X6ppeq6v52mKosorW2gjYQrA8jKgLu6IAMkk9q60aj4M7aHETjp9mth+pNL/aPgzH/IDh69rW26/nQBwGqadHpzWCC6SeW4sYLq4RVKm1klBPkPk5yBjP1rOFennUfBnfQ4v/AAGtzj8jR/aXgzOP7Chz1H+jW3T14NAHJaVqVhp/h/xXD5xGpamLOyt49jEfZRJvmYuBt5GB1pPDOpWGlHX7ueUrdnR7u10xQjNuubgCLJI4AAzXXf2l4Mz/AMgKIjt/o1t/LNH9peC85OhRY7n7NbcH060AZvh7xRo8Gmx/2q0g1TQrW/h0ORULiaK7iaPyJCB/ATuUn/8AXz3hbVrXRdc0/UbtJJIIjIsvlYMqCRCnmID3XOa7P+0/BnT+woif+va24/Wk/tLwX20KI/8AbtbAZ98mgDmzp/g+3vZr2915L+xMjzpa2MFyt7c5Jby5WlVUT3O41gf6Fc33G2ytJrjjPmTC2hZvxc4Feh/2n4MGf+JFF/4DW3+NJ/afgv8A6AUWf+va2P5kGgDze5SCOeeOCbz4UkdYpthTzUBwH2NyM1Z0mybUNR0+zAz9ouERh/sD5m/QGu//ALU8FDroUXPT/Rbb+hp8WueFrVxPZ6Msc6htjxw28bAkYxuBzQBH4unXzbGwicKlrF5jqO5YbUHHoB+tcw2SOvp1Of0qxfXct/dz3UiBWlbJVSMIoGFUZ54qv9FGTzxgZ9yaADPQZ6cg9QPwFJluRkc9T0B/A80h9lG7pxwT7Zo57quR64OPagAyw/iH1HH4UmWzyQAOnXI/Gj5u4/qP0ox7fTODn6igBMDruXnr1yaTk9T+P/6qX8OO/IAFIQf4V/DoKAEyw43AdevQflSn07464ODnt9KTnsOvXOBn8TScnqPpjn9TQAiluh+VlI2sOcfWn/vP7sX/AHyKaOM54OMc4OR6HFGF/un/AL7H+FAB8vfP54/nR+J+vH86Mg/xf1oyPX/P0oAUbeOv8/zNLwOmTz1JzSd8buvXtn8KOB1Oe2emfagBwx15z/noKBjOckHPH0+lIODnPA/DH40ufRv6g/jQAEA4IOP72Bk+5waUqrcZBbCsCv3WB6EUDn5t3X2zn2pGB42kgjJK+564oAX5xgNyDxkdj3U+9O6dAce/zfrTcsflJALDcp/hYdvyoUsB8wPXbkE4zQA/oM889f4j+VHoR/P9cUmSDksPw4wPrS9OScj0x+uaADg8856jnHX2NKAT3OB74PHvRnJ4Oe+MZyPrRlm78dMn5v0oAsWllqGoSyQ2VnPcSRxiSRYByqE7QxJqOOKeSWG3ihmaeWTyUhCkyGQEjZz34Ndd8PVZ9U1fB+5p0RHf/lvU2maS6eP9Six+5tHudTUchdk6L5Rx9SaAOOntbq0n+y3FrcR3WYgIGUtKxlGVCgc89quSaJ4hhjaVtH1BUVdzny2baBzkoOfrXXTxBviPaIRnFlBIMgH5hbcEe4qXR9S1i58Zaxp813JJZp9tWK3YIEiELoFKkDPc96AOCgtb25hu7m3tZ5bezQyXMsQzHEgUyEt+HNItvdPaNfi3nNkkgiNxt2xByQoUk/Wut0KMf2T8UQoAWM6kqgcABYJMCquuxtpnhrwlo7HbNcRtqd2pydxwWIbv95+P932oAyItE8QXMUM0Wl3skU8aTROiAbkcZUqfeq8dnqMl1LYRWV097ESstvFEzyR4xy+OB1Fdbrd7qem+HPBBsbyW0ae3hWV4du5gtqHAO9SKi8HzXZt/Hl+0ry3ot7WYzybS7OIZyGOAB2HbtQBzl1pWsWMRnu9NvIYF+/LKhKIPWRh0qGS0vYLe2upba4jtbokQSsvySHk4U12Hhe+1XVNK8WR6ldyXixWKOhmWPI82GRmA2qOOBWczG5+HWl3XJbTNQhhkJ/hUP82T9GFAGAbS9FrHfC0uPscsy28VwF/dvKzbAqj1J4q7/wAI/wCJhydHvsqD/AMe4IrZ1WM2XhfwFZcbrm+tbn3IWQS9P+BVZ8a6lrNlrMVtaajc2sJsUlaODywGdnK5JZTQBy1ppmrX8Pn2enXc1vvkiEkK4XfGdrKD7HrUd1Z39kyxXtpdWzSAlBOhQOB18tuhx3rp9Pmu7LwBe3VpM8M0eqXKJNGRvXddqh5YEc/Sna1LdXvgvw1e3TmW5kvYS0rABidky5O0Ac4GaAOThhnuJoba2ikmmmJEUUfzO2wbqmi0/Vbi4ubSCxu5bm2ybmBVDSQnOPmrQ8KLnxFoy/7dx7ZxA9dP4fRv+Ew8bKByqxEf990AcJBa31xFcz21pcyxWyB7t1GRCME4YduhyKgLKoLtnAGeCcYPqK9Ei019PHxKiC4ikiN5b44xHPBI5/XcK83cZgJ3c7FyMd8rg5oAu3VhqFmYPt1ncW3ngmEyjar45IGOtJ9jvzZnUBa3DaeGIa5C4jXB28N6ZrvPHtmzaJYXoHzWNzCxP+zPEYf5kU3VbE2XgDyPuOlhZs+R0eVhKc/nQBwk1pe29vbXU9pPFb3PFtLIuFmPov8ASkurS/sXtku7O4he62i2WZMmXcQoCkd8kfnXUeI0K+FPBh9ZY89Ofl61veLdNa40/QbxVJfT9S0p2x18maSKNuPrtoA88bTtUjvF05rK6GoOFK27LmQqRuBHbFMSyv5LtrFLS4a+DvG9uB84aMZYEe1d3fIw+I1inraIcd/9U1Z2nIf+FhXag/8AL1qIx3H7vNAHNwaRrV19p+z6beSfZbiS1n2KMRzx/ejYeopt1pmsWS232vT7uFbm4S1g3DHmXEgJWMY7nBre0y71GHxld2MV3MlpceItT8+2G3ypTiU5+7nsO9Ra7dahP4sFjNcytaWeuaW1vbHaY43xF8wwM5+Y9+9AGa3h/wASqrMdHvQqqWJ2jgDknrVSz0/U9RVnsLC7uY1xukijJQEgHaWb5d3rXUeM9T1q01yaztdRube3+wWz+XCY9paQyKxO5SecU9p7zSvAGhzadM1vLJdCLzYwu4h55Mj5wRzgUAclNZ31tcRWctpdR3crIsUEyFZJC52qVyMEGm3VvdWU0lvd280FwqJI8Uo+bY+dpwPXBrpL/XLPWb3wMIRcfbLS9tUvnmi8sM77QQhPUZ5qHxxlPE94OhFjpvPT+GTvQBzfB5Ocjpnt+BpOv97j9fwpctndn6j19800sxPBOCeuN1ABxzgEfmD+GaPUZPTPTj8/Wg89TyB3JbH4UZ7BvcD/AOtQAnT1/E5z9aCFHrg8nnP5CjJxgnk8HsG/CjGOp/HGMe2aAE469+nXPH0pPl6859zx+VL0OSeMdOhHvmk68hvp3z+NAB+J/PH5Gk9jnHc9PyNL17/ieeaacdD2/HH4UAHAwOcfn+Zo+Uf3sexzRkdCeT9efek+pyfX7v8AKgAOOeD785z+FJx7/n/Sl56hsY6cYxSe5P6H+dABhff2xxRge35UnX/9eaWgAO7sB+OFoz7D6f8A16TA7fkSTS+/f/PagBc8ds98c4+hpRu7hfwOaTI687u3b8xRweoP48CgBc/7v+fUUvPoMDrk4/Sm5+uP89DS9exwOnoPxNADvm6gA+vOOPajP/1u3603jtn04OaXP1/r+VACkHHygdc4J79yKFIIIPBYYII4b0oHrhg3qfT6UuQRjnb1Ix8yn1X+tACKxBCtg+nGef5U/JHUDB6c8/lSI4YEYByMMOm4f09qaDg7efYnrxwQaAHHJPTAzzt4x9BTuDj7ucZ6hcj3NNyBgDdj06+/JpTtA4HJ5Pfn15oA7P4fki98SFc5GiMU4/iDkiumllgitD4pif8AfalpmiacMHqxu1QkfXJ/KuY+H/Oo6+Aef7HAPqcyMOlY9trepXNn4f8AD7pb/ZLXV7N0lVpPPkVLosqMp+TAyaAOwuPl+KFuAOBYRj8rYVoaTpeiweKtT1CDW0uL+U3fm6cFQNB5jIXyw54wPzrLuSx+J0PP/LlH+f2cVU8Pg/8ACf65gc7tT+bA5+ePvQBP4Xe3js/ia9wpe3S9vnuEHV4VjkLqPqM1m+Po5m1XTrpSGs7vSYfseCAEWIsXA/76U/j7VZ0LnSvitz/Hqmf+/EtVXDaz4Dt5QQbvw1NtlBPzG2RcYJ6/cKt/wGgDev8AUdF0/wAN+CjqmkDU1ms7ZII2dE8p1tlZmy5xyOKyvCDRNYfEuSOLyYpYllghB3eTFIl06R5H90ED8K0L7QdR17w74NSzktla0tLeV/tLlVZXtggxiqXhO1eCfxzoNxPAl9JFbW6bXyj7YpFZo88kDeufrQBF4EJ/szxpuHP9nQZwcgH7PLwDVfw0rX3gnxjpQ++qW9zEOuTPGhz+a1saVo1z4V0fxRPqtzZBbqzWOIQOcFkjdAPm5ySRgAVk/DuQpqF9ZSDi40uIlWxgtAy5/TNAE3jR/L1DwbY5Hl2NhYbgO0jTwpnj2Fa3jbU9At7yazvNDW9v5dOcw3RljRoBJuROGOTtPNcx4qnabxXcgZ2W9xpVspxlV8t0LAH8a6fxX4X1nWdUjvrOS0WOOzFuyzuVfcjFyQB2oAp6EujH4f3EetzTRWI1G6FxJbZMoZbldpXAJ647Uzxm1np2l+HPDthHMYIwuoJLK+Q0SB0UFz1YliTxx+NUohu+GupAjhtUuBjI73ig0uvF7/wr4P1UgGW3LWNxtOSm5Npzn3T9aAKXg/H/AAkui5xkNPnuR+4fjNdX4fP/ABWPj4H/AJ5rgjtzXI+EgP8AhI9ExnduuM9sZgfjFdToOf8AhL/HfP8AyzXPvzQBe06/j1TwVcagRm6fRJ7O6c/eaS1V0+b8yf8AgVeUSZEJGB9yPnIznI4xXZeDZGPhbxhCWPlpbNKAT/HJbMrEH/gIrjH4gwM42Rnj6r1NAHsuqRJqkl94fdgv2zRbS7jLDKq0Nwikj35rN8T3S3XhzxqE+7a30dhGOijyBH3/ABqh4p1W+0TX/D19aRQzOdFuIninL+WyNJHyTHzx1rNjmluPAHiu6m5e41i8lkC5I3PJGxC554zigCfxN/yJ/gfsfNiyeD/D2rrbi7hXXtF0ycboNU0TIU/d8+1kWZT9T/SuO8SY/wCER8Fc9ZIvw+XvVnxfNLb634JnjbEsS2ZjO7oHnSJsgexNAF68wfiRpZPX7DFz/wBsWrO04n/hZN6cDb9r1EdeSTEO1WNXuILL4hadLO4SIQW0JkbARPMiZVLHsM4H41oW3hy+tvFV14glubMWDPczr8+JB5yBfmz8uBzk5oA5awJ/4WA+duP+Ek1Xv7TdKj1oj/hObrHT+3dJPP8AuwUzSpo5/G0NxC26K417UZYZFGQ0brMVYE+vajWM/wDCb3X/AGHNK5/C36mgDo/Gmq+H4L+8sbjQVvNRfTk8q+8xE8rzd6x/eOflIJrE0HxRa2Wnpoeu2KXmk5bDou+SFXYu29D94AkkEEEfhW34p8K6zqmpz6nay2QhFlBGyzyFXzB5jNwPrWNpfhqx8QeGrS501401vzWW6M87FAm9sqyDpldpHFADtb0TTNG1PwpeaXNI9jqV9byRRyneYdrLIDG55KkHjPSq/jw58V6n/s2mnrjGRwr9q0vF0MTS+A9D+1qLuF4YJJIG+aDKpAJQB3zyAa57xLYXOma1dWtzfzahN9mtJ3up+JWEgcBDt9McfWgDI59MjuM9/YUHcc4Az3AwMD2pCcdj0zn+maOB93d+p/WgA4GNoXJ9eM/U0ZOONv8A9f0zScDOM89cc/pSZHXBJ+vb6UALz3Ue+efyNJyOSAPQZzke4oO04zn2GSDSc+4/MfqKAD5s5429OSCSfcUc89Md+xH0FGR0IOPXp+tHYYzjt3x+NAATnGMfjgAikOeMD6ds/U0nHZc+wyfxxRgf44Of0NABzzwPf/6xo57gfz/Hik+XAJByOnJ/UUZz1z7ZyP5UAHzdeMdu+fqKTPPQY+v9KDg5zux+Q/A0mSeucfSgAJyf68AUvFN/AY9+f50vy+lAAcDv+fFHb+hoBPfb+HP86B1z/D7cn8jQAucjIJ+g/rmjg9CR+GaMNnnbj8j+FBJPAxn3449iO9AC5H+TyPoKX5enUn16/lSfj9M9PxNGTjt7j/DNACn8/rxn8qXtnP59vxoGe+PfBzx7ZoAbOePQYPP4igBRu7MP5ilGCQQ3J9OQab+P1z1zS5b2PPPb8qAABTuOM54bB5UjuKPv7ufmHAK/xfSly3AyPfcR/MUm35genUkjr9RQAu4LjJJU8KTwfo3vS9MEk4PTjFIRn7x5wGBU/K49aAWXbuxg5AI7EdjnvQA4jqwLYxj5WK4H1UigAEAA4GOi9Mdcg9aB16jPUev5UHceu3HOeTn2xQAYU87mznO7exc44xuJz+tGMcc5GeVdsjPU5Bz+tB/DPGdxIGPal5x0HfGfX3xQAgWPoNwBBBAZxuHqwB5pdq992G4OGZQ/oCqnH6UuTjkenTn+dHzZOcZ/2TkYoACoUY3SBR0HmSADjpw1G1MA8/Kc5BIPPOd+d360DjrjHoDk/jRub/Zx3GTnP+FAAFU7SXcgHI3Mz59PvkilIVj945A4KFgV/FSKOSf4e5IORx7Yo+bjG3/ZySP5UAGBgoO+S2SSTnucnP60YA2jfISf70soLH/vqlycdB14+v1oBbBB79cc/gDQAmyNOpbG7ONxCg/7udv6Uu1ASSSTndjc20e+3OM/hQMr1K57YOePfIpctntj8z+PtQAhAO3rxyNpIz77lOaaFQ/dLDk/MrPk56gndmn/ADcnA29znB/ACkO4njbnvnI4oAaVQ/LkrgBSFZhwOgIU4pxxnaSDkcg9x06UvzYwMZ7Bv8aTBAxnv0GOv1oAQALzljkYy7MTjsBuJpCFGWyw53HJYKD64zj9KdzyPl3dwDkUoLAjoP7oU54980AM2qOc5Xn5SWZRnqRk4oCIfUjAGSzOSByACxJH4U75s5BG36859xikLZ9Mj73Y/wAqAEwpDjccHAfJLscdvmJpCqkkZfH93zZDge4LYp+WOMBcgcZyAR9aQ5Ixx6c9AfegBDt4XnPGMEqcj020mAAwycM2TuJzn65zn8adyARx74/oaQBge2ewBzx+NACFccl5MHqDJJgD3O6kCg4IJGBj92WUFe33SKXDA54x26k/iDQc+2O+cg/gPT8aAGhUIPJOSCW5ZiR7n5v1oG3LcnccBiSzsfTJYmnHJ9M+p4/LFG44AG0+54H4mgBDtyB3649vpQeOrdemeCfbFGT0/wD1Z+tJ83P3T64OaADOO+B9QMUe+ePTt9cikyfQfhzx7g0nzZ4A/PnP09KADrzuPoPf60Dn+I8enb2o6nIK57//AFqCSfTp34H50AGRkjJ6c/8A6qaSMgZ69M8Z/ClO7GBjOeM9KMnBGR/tY6fgTQAnTv8AicCjjrnpz06e+RR83fH/AAE5/Ok5z29uec+9AASDzk4P6++aQEHv/Wl5zk4HrnqT7Uhz7fjQAnXocY6kcn8jR3xz+f8ASlOSB09s8D8cUnbH9eKAA8df1/8ArUc0g46c/TkfrS0AIT/eH58fyNL/AC9+n6Ug56k/gR/WgH/PegBRj0OPbOPwpc+gwPQZP86TIzjJyemev6UfU/iTQAvv37+ppfw59ecj8uKSl/E+3p+NAC8cZB9s8Ucdxx264P170n0Jx7Y7etAI7nP06/XmgB2fp/T6Uuf7o46Y7AfjTeOnr/nJoJHHJ56Fu5/CgBw9lOe+OTn8aUY9Du/H+VNJ4zkke/8ASlyMdT9O3+NACMG/h4x8209j3pwLFTkfeUHD8hh2/GgY4K7vz4P1zSHeQcc4JOAQMN6jP60AAbHyv647073xx69QPTNNR94wcE9CDwCPQ+/vSBsHaw74yevtQBIOnAOO+Ofx5NH0zn1HWkyBxk44xu7/AJUpwBk5I98UALgZ6c9iSe/UUcH7yjjpknj34pBgjq38x+NA2nkHHpjv270AOwvcce+cH8qMnsDj6cU35TnBPuQOf1pePqevJ7UAKMdAMAdMdvrR0yQDnvjr+FISBjnOemf5nFLnAyT065x+hFAC/L1/i6d8kenpSDB+8Du7Zzn60YHXJ49cY+tGQ3c+wBGD9aAF4PUN+PQ0cjqpK/kD+VJlT3xjjjnn6mgN1Gc464xkUALx0AIHqOg9jmlzjgdPRc5+vNN4HGck+vX8cUpIHU8e9ABlcZA59s5P50cZGQM44JzkD0xR2JLHGOpxgfSk4xkE/gRjHrQAvHG5c+gIII+mDR/vDr64GR7YNJ15/Xj9c0deP5df1oAX064+ufwo5HAHHp2H1yc03jJGef6e1B4IXPJ6UAKe+FPqcc5PtmjC9f4jweucelJnHVj+PH5Ypcgc5OeuOw96AEwOOOR055FBwfvL+ee/cYoOG7n146H86TgjqR6kHJ+lAB3IwSP5/lR7Y4/LH4mkBBOM8jqRQSM46ntzQAuMA7VOO4HP40mM9ue+08mg7fViPfHX8KQ465YfU9Pp3oAXC91yfc8gelGPY8dAeo/KkwMZyfX2+vrSDb6sB7d/rmgBfXI+ue/4ik9+eO/9KOCcDj1PX+dJkdM/l1x60ALkfwjp6Z4/OkyPTPc4zn64oJGQOefU8n60HHqce/8A9agBOM8Dnpxnn25oOPQ5Hrnj8KOMdTxzzgge9JkEZyf6H3oAPqPzz/SkPPVeP0/DFKMdj+VHcjpjkkcUAH0+72Pp7UnHZRj8aTIHGT+uTQSo/wDr9aADjJ4+uOtJ+H55zS8Yzk4/QfSk4xnLfh0oAD7j8/8A61FJgdqXHvQAHP8A+vP9KP5fjik+g/LAo/z/AJNADhuAxxg9cdKBx3A+maTA/H36j60vPcA/X/61AC/jR+PB+uT9KTP5e/T9KXJ9OPbgD6d6AF57kfiST+HvS5b1/wC+un6U3j0/LjA/GlB9P04/nQAuTjBGB+FKCwzyD67cjP5038Mn17/SlyB1GCOmeSD68UAKCc9QT7ZHHvRznOR9MHNGf9kY9Dk/pRn24oAXJPXBHfrk/TFLlieuB2z0/Sm59Bgeg6Cl65wOfbr9aAA+h6dSB1U/3h/UUqlG4wrEHGM8HPXHekGOoHPcjP65pCBkEggjqF6j3oAcCEPfachScA/Q+4pQcc5ByeMZzn3zTDhsg/eGOQeGHalyQBvG4HgkdAf7p96AHnPByuO+c5zQSSeT9c55x2HvSYx06djwT9KACfujgfgB7nNACkk+me2en6UoJPHXn1I5pMemCfbj9TRkf7IPT8PSgBRkZ+bPrgnB+maPmBByPbGcjPYk0nHGVOe3PI98ilyO65/3uR+QoAMnjlc9hg5470pJJ5I9+uT9DSE9c5Pb1/CgZ9BgcD0HtigBSXPGVGB/HnGPbFLlsAenTP3R+VN5/hAz7YBPvyaOOmAD09CR6ZoAXnkZH4dM/jQOP4lP+6Tj9RSYHcDPqecfiKOO4/A+vqKAF+fOQR+Gcj6mgknnK/mc59fSkwe4+X69fyo6dgAOuP5YNAAcnnj6knJHtilOcAEgHtnOP05pP90DH+zxj65o+Tn5cnvj734npQAuWxtz36ds0AkAqT164JIP0zSfgM+vf6c8UZ9QM9t3b8qAEG4c5H1Gfy5o567sAngHhgaU7u6gjsDzn3pM+oGPwx9KADLZ4b6j+Img7yeSM++cY9KPcAYHXGOBSc/wAfQfz5oACcjGenr0FAPHXg/kfekz6DLeo4z+dH1U7v1FAB8wOSR9Vzj6c0AnqOo6Y4x9aM+oGPQ8/wAqTnjI+U9Aecj8KAF5znj1OfvZ9R7UhLE9QPUnPP5UYJ9Nv5YPp60Y67eB6D/69ACE5GAfxOcfpRk4xnj36Z9aOOmB+HU/jScegz046/SgBfmGRxz125wfpScjv+XX6HNHTgjn0PUfjmkJ/vDjsOv48UALz1yPbOevqaQ785OPfPJP0oz7ZHv0+nFGD6fKOvOMfQUAGc9/xNIckAdO4J/rijj+HH+fXNJx6D+poAPm9QR7dD+FLlh0PP8As5/rScen88j8aMe34H+dABnBzke3r+tNJOc5H9aU+/I9+R+FHPp+lACHPXj8T/hRg+350fQD3xxR8voKAIvPtu0q/nml8+2/56p+fH5VkUc0Aa/2i2/56p+fFHn2v/PRfwY1kUUAbH2i2/56p+BwaPtFt/z1X86x6KANn7Rbf89k/Ek0faLb/nsn4n+VY1FAG19otf8Ansn50faLX/nsv51i0UAbf2m0/wCey/gefzo+02n/AD2T86xKKANv7Taf89kP1P8AOl+02n/PZPzrDooA3ftNp3mU+xbigXNmDnzk/Pj8qwqKANsz2Wd3nJ74+vUU43Vr8y+dEfUknaw7VhUuaANpbq35DSx49Qad9ps/+eyY9zk/nWFRQBui5tB/y2T8+n0p32my6+cmfrWBRQBv/arT/nuv4N/Pij7Xaf8APdR9Gx/SsCigDf8AtVn/AM9k/Oj7Vaf890/E/wBawKKAN/7Vaf8APeP/AL6yfwo+1WX/AD2T/vrj6gVgUUAb/wBqsx/y3TP+9x+IxR9rsz/y2THs2KwKKAN8XVn/AM9k/BsflR9qtAcidM+u7JrAooA3/tVp2nTHuc0farP/AJ7r/wB9Z/AVgUUAb/2qz7TJ788UfarPvMntzx+NYFFAG99qs/8Ansv4Nij7TZ/89o/z5rBooA3ftNp3nQ/jz+YpftVn2mT8TWDRQBu/abPtMg+rEij7Taf890/BuPyrCooA3ftNmesyfgcUn2m0/wCeyfgcGsOigDcNzaf89k/Ok+0WfH71fxYmsSigDb+02n/PZfxOaPtNp/z2X8+KxKKANv7Raf8APZfz/wDrUn2m0/57J+BwaxaKANr7Ra9pU98HFJ9otf8Ansn51jUZoA2ftFr/AM9k/E5/pSG4tv8Ansn4n+VY9FAGx9otv+eyfnxSefbf89V/BiKyKKANfz7b/nqv1B5/Ok8+2/56r+dZNFAGt59v/wA9U/E5pfPtv+eqfmayKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAJbgBZ7kAAATSgADAADEYAFRUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXRW9vatb2zNBCSYYiSY0JJKg5JIoooA//9k=” alt=”” class=”wp-image-136″ >
Addressing Existing Coverlay Squeezeout
In cases where coverlay squeezeout has already occurred, several methods can be used to address the issue:
Manual removal: Carefully scrape off the excess adhesive using a sharp tool, taking care not to damage the underlying conductors or substrate.
Laser ablation: Use a laser to precisely remove the squeezeout without affecting the surrounding areas.
Selective solvent application: Apply a solvent, such as acetone or MEK, to dissolve the excess adhesive. This method should be used with caution to avoid damaging the coverlay or substrate.
Case Study: Improving Coverlay Squeezeout in a Medical Device
A medical device manufacturer was experiencing frequent coverlay squeezeout issues in their flexible circuit assemblies, leading to electrical shorts and reduced reliability. By implementing the following changes, they were able to significantly reduce the occurrence of squeezeout:
Redesigned the coverlay to provide a minimum edge clearance of 0.8 mm.
Optimized the adhesive application process to use a precision dispensing system, reducing adhesive usage by 30%.
Adjusted the lamination parameters to a pressure of 15 psi and a temperature of 165°C.
Implemented daily quality checks to identify and address any squeezeout issues promptly.
As a result of these improvements, the manufacturer achieved a 95% reduction in coverlay squeezeout-related defects, improving the overall quality and reliability of their medical device.
Frequently Asked Questions (FAQ)
1. What is the most common cause of coverlay squeezeout?
The most common cause of coverlay squeezeout is excessive adhesive application. Applying too much adhesive during the bonding process can lead to excess material seeping out from under the coverlay edges.
2. Can coverlay squeezeout cause electrical shorts?
Yes, coverlay squeezeout can cause electrical shorts if the excess adhesive bridges adjacent conductors. This can lead to circuit malfunctions and reduced reliability.
3. How can I remove coverlay squeezeout without damaging the flexible circuit?
There are several methods to remove coverlay squeezeout, including manual removal using a sharp tool, laser ablation, and selective solvent application. However, care must be taken to avoid damaging the underlying conductors or substrate.
4. What is the recommended edge clearance to prevent coverlay squeezeout?
The recommended edge clearance between the coverlay and the nearest conductor is typically between 0.5 and 1.0 mm. This allows sufficient space to accommodate any potential squeezeout without causing electrical shorts or other issues.
5. Can the choice of coverlay material affect the occurrence of squeezeout?
Yes, the choice of coverlay material can influence the likelihood of squeezeout. Selecting coverlay materials with the appropriate thickness and adhesive properties can help minimize the occurrence of squeezeout during the bonding process.
In conclusion, coverlay adhesive squeezeout is a significant issue in the manufacturing of flexible circuits, which can lead to various problems, including electrical shorts, contamination, and reduced flexibility. By understanding the causes and effects of squeezeout, and implementing appropriate design and process controls, manufacturers can minimize its occurrence and ensure the production of high-quality, reliable flexible circuits.
[Word count: 932 words]
0 Comments